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Abstract. Multi-label Intention Understanding (MIU) for images is a
critical yet challenging domain, primarily due to the ambiguity of inten-
tions leading to a resource-intensive annotation process. Current leading
approaches are held back by the limited amount of labeled data. To
mitigate the scarcity of annotated data, we leverage the Contrastive
Language-Image Pre-training (CLIP) model, renowned for its wealth
knowledge in textual and visual modalities. We introduce a novel frame-
work, Intention Understanding with CLIP (IntCLIP), which uti-
lizes a dual-branch approach. This framework exploits the ‘Sight’-oriented
knowledge inherent in CLIP to augment ‘Semantic’-centric MIU tasks.
Additionally, we propose Hierarchical Class Integration to effectively
manage the complex layered label structure, aligning it with CLIP’s nu-
anced sentence feature extraction capabilities. Our Sight-assisted Ag-
gregation further refines this model by infusing the semantic feature
map with essential visual cues, thereby enhancing the intention under-
standing ability. Through extensive experiments conducted on the stan-
dard MIU benchmark and other subjective tasks such as Image Emo-
tion Recognition, IntCLIP clearly demonstrates superiority over current
state-of-the-art techniques. Code is available at https://github.com/
yan9qu/IntCLIP.
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1 Introduction

In the digital age, images on social media platforms carry a multitude of implicit
intentions, transcending their explicit visual content. These images aim to per-
suade, celebrate, inform, and more, highlighting the importance of understanding
their underlying intent in areas such as mental health monitoring [26], combating
misinformation [37], and others. Despite advancements in Multi-label Intention
Understanding (MIU), the field is still hampered by a lack of labeled data, exac-
erbated by the inherently ambiguous nature of intention. As depicted in Fig. 1
(b), an image often embodies the uncertainty and diversity of the intentions
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Fig. 1: Inconsistency between sight focus in CLIP and semantic require-
ments in MIU task. (a) Regular image-based classification tasks, as conceptualized
in CLIP, rely on sight—the discernible visual elements such as objects within im-
ages—leading to straightforward image-text associations. (b) Conversely, Multi-label
Intention Understanding (MIU) gravitates towards semantic information, encapsulat-
ing complex, often subjective intentions that are not immediately apparent, thus ne-
cessitating an extensive and costly labeling process.

behind it. In contrast, fields like standard image classification have flourished
by leveraging pre-trained knowledge, such as CLIP [28], drawing on extensive
image-text pair collections. This effectively mitigates the limitations posed by
scarce labeled data, as shown in Fig. 1 (a). Such knowledge has markedly en-
hanced feature representations, a potential that we aim to channel into MIU.

However, the knowledge inherent in CLIP is predominantly sight-centric,
focusing on observable elements such as the shapes, colors, and spatial arrange-
ments of objects within images. This emphasis creates a notable gap in address-
ing the semantic insights that are crucial for MIU, which encompass recognizing
context, cultural significance, and emotional resonance. These aspects, inferred
from an image, extend beyond its literal representation to include the contextual
meaning behind the visual content. Current adaptation strategies, particularly
prompt learning as explored in [38, 57], tend to overemphasize sight knowledge,
thus complicating the integration with semantic intention understanding. Con-
versely, allowing complete adaptability of the network during training risks com-
promising the objective-oriented (sight) capabilities learned during pre-training,
a concern we elaborate on in our ablation study in Sec. 4.3. The core issue arises
from the significant divergence between semantic intent-oriented tasks and ob-
jective sight pre-training, highlighting the need for a balanced approach that
effectively synergizes both forms of knowledge.

To address this challenge, we introduce the Intention Understanding with
CLIP (IntCLIP) framework. IntCLIP is designed to capitalize on sight knowl-
edge while pinpointing semantic intent cues. It features a dual-branch archi-
tecture: one branch maintains the original CLIP’s immutable image encoding
parameters, while the other semantically adaptable branch evolves to focus on
intent cues during training, as illustrated in Fig. 2. This configuration facilitates
the capture of both sight and semantic information, resulting in a comprehen-
sive image feature representation. Moreover, we introduce Hierarchical Class
Integration to effectively leverage multi-layer labels, suitable for sentence-level



IntCLIP: Visual Intention Understanding with CLIP 3

Sight-assisted
Aggrega-on

Seman-c
Encoding

b. Sight-seman-c Image Encoding
Sight

Feature

Input Image

Seman-c 
Feature

Sight
Encoding

Attn Layer

Seman&c Layers

Sight Layers

Deep Layers

Shallow Layers

A>n Layer

Seman&c Layers

Sight Layers

Deep Layers

Shallow Layers

Learnable Weights

Frozen Weights

Frozen Weights

🔥

b. S-s Encoding

Text Encoding

Class Integration

Text Encoding

AS Loss

Sight/Seman+c 
Features

Final Image 
Feature

Final Text 
Feature

"stability -> fas-dious -> a@rac-ve"

[𝑉!, 𝑉", …, 𝑉#, CLS]

❄

a. MIU with CLIP

…
…

… …

… …

Original Hierarchical Label

Fig. 2: Overview of proposed Intention Understanding with CLIP (Int-
CLIP). (a) Demonstrates the MIU with CLIP process, incorporating Sight-assisted
Aggregation to fuse sight and semantic features with text encoding, followed by Asym-
metric Loss (AS Loss) optimization to align final image and text features. The Hierar-
chical Class Integration extracts abundant class information from hierarchical labels.
(b) Depicts the Sight-semantic Image Encoding strategy, where the CLIP-initialized
encoder is dedicated to capturing sight-related features, and the semantic branch,
through partially learnable deep layers, evolves to accommodate semantic informa-
tion, thereby preserving both objective visual details and subjective semantic insights.

nature embedded in CLIP. Additionally, our Sight-assisted Aggregation method
enhances the sight feature map, aiding in the discernment of critical regions for
intention understanding.

We summarize our contributions as follows:

– We are the first to adapt CLIP’s sight knowledge to the domain of MIU,
significantly enhancing its reasoning capabilities.

– We introduce the IntCLIP framework, along with Hierarchical Class Integra-
tion, and the Sight-assisted Aggregation to effectively facilitate this adapta-
tion. Their synergy is instrumental in guiding the extraction of intent cues
and pinpointing key intention-related areas.

– Our approach has been empirically validated through experiments on the
MIU benchmark and in other subjective tasks such as Image Emotion Recog-
nition (IER), demonstrating marked superiority over existing methods.

2 Related works

2.1 Understanding Human Intention

Understanding human intentions has garnered significant interest in recent years,
driven by the improvements of deep learning [2, 4, 12–14, 34, 45–47, 49, 51] and
its considerable application potential in practical scenarios. Initial research ef-
forts focused on inferring intentions from facial expressions, bodily cues, and the
context of the scene, as explored in studies like [18, 19]. Recently, the research
emphasis has shifted towards predicting the underlying motivations of human
actions, as evidenced by works such as [20,40,43].
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In contemporary research, the domain of intention understanding spans di-
verse fields, including transportation [23, 58], social media [9, 36], and adver-
tising [42]. Pioneering this domain, Jia et al . [17] introduced Intentonomy, a
fine-grained image-based intention dataset. Their work systematically explored
the relationship among objects, contexts, and intentions in images. Concurrently,
Shi et al . [32, 33, 50] utilized semantic information as guidance for more accu-
rate intention modeling. Similarly, Wang et al . [41] proposed a prototype-driven
model to address challenges such as intra-class variability and inter-class confu-
sion. Despite their commendable achievements, a persistent semantic mismatch
between visual data and textual intention labels remains a challenge. We aim to
bridge this gap by incorporating a comprehensive visual-language framework.

2.2 Leveraging Visual-Language Models

Vision-Language models, especially those based on contrastive learning, have
demonstrated remarkable abilities to bridge visual and textual data [15, 28].
The pioneering CLIP model [28], trained on an extensive corpus of 400 million
image-text pairs, has established new benchmarks in transfer learning capabil-
ities across various classification tasks. This breakthrough has inspired subse-
quent research [8, 44, 48, 55], investigating optimal training methodologies for a
range of downstream applications.

Rather than fine-tuning entire models – a strategy that may disrupt pre-
established alignments as highlighted in [6, 10] – recent trends favor a prompt-
based paradigm. This approach reimagines classification challenges akin to Masked
Language Modeling (MLM), as described in [21,22,35,38]. Pioneering this initia-
tive, Zhou et al . [56,57] were among the first to apply CLIP to classification tasks
using this paradigm. In parallel, Huang et al . [11] introduced a novel method of
generating pseudo-labels for images to refine prompts in an unsupervised man-
ner. Sun et al . [38] further advanced this approach by presenting dual (both
positive and negative) prompts to efficiently transfer alignment knowledge to
multi-label classification tasks. However, as discussed in Sec. 1, both all-learning
and prompt-learning paradigms have their inherent limitations. Despite these
advancements, finding a balance between utilizing pre-trained sight knowledge
and adapting it for semantic intent-based tasks remains a challenge. Our Int-
CLIP methodology offers an innovative solution to this issue, seeking a balance
for intention-centric applications.

3 Proposed Method

3.1 Problem Definition

Multi-label intention understanding can be formally described as follows: Let M
represent the set of intention categories which characterize objects or attributes
within images. Given a training image with intentions denoted by I, each inten-
tion category m ∈ M is assigned a label ym, where ym = 1 indicates presence
and ym = −1 indicates absence. During the inference phase, the objective is to
predict the relevant categories for a new image.
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3.2 Revisiting CLIP in Classification

The Contrastive Language-Image Pre-training (CLIP) technique, as introduced
by Radford et al. [28], demonstrates significant potential in capturing and repre-
senting visual cues. Central to CLIP’s architecture are dual encoders: one specif-
ically designed for processing images and another for text (refer to Fig. 2 (a) for
details). The image encoder is highly versatile, compatible with diverse architec-
tures such as ResNet [10] and Vision Transformer (ViT) [7], effectively translat-
ing images into features. Conversely, the text encoder employs a Transformer-
based design [29, 39], which converts sequences of word tokens into representa-
tions.

For intention fine-tuning, we draw inspiration from Sun et al. [38], adopt-
ing a shared embedding space for both visual and textual modalities, given its
demonstrated efficacy in multi-label scenarios. Specifically, for a given image-
text mini-batch, our goal is to maximize the similarity between correctly paired
image-text data, while simultaneously minimizing the similarity with incorrectly
paired text. Let x represent the image features, and let {wi}Ki=1 denote the series
of weight vectors from the text encoder, where each vector corresponds to one
of intention categories K. Each weight vector wi is derived from a structured
prompt, typically phrased as “a photo depicting a {intention class}” with the
placeholder substituted by the corresponding category name. We introduce a
learnable prompt “X” to replace the traditional phrasing. For classification, we
utilize a combination of softmax computations and cosine similarities to deter-
mine probable intention category for each image.

3.3 Infusing Sight Knowledge to Semantic Task

Hierarchical Class Integration via Large Language Models: Contempo-
rary datasets often feature multi-level categorization systems, illustrating label
taxonomies in a hierarchical manner. This layered labeling offers deep insights
into the complex interrelations among labels, particularly in subjective domains
such as multi-label intention understanding (MIU). The extraction of hierar-
chical labels, spanning from coarse to fine-grained, poses a unique challenge in
accurately capturing the layered semantics inherent in multi-label datasets. A
basic approach might concatenate labels across various levels using delimiters,
represented as ac = {a1, . . . , an}, where ai represents the label at the i-th level,
and ac constitutes the consolidated label. However, this method could result in
disjointed and redundant information.

In contrast to the basic concatenation method, Shi et al. [33] proposed Hi-
erarchical Label Embedding and Grouping (HLEG), which utilizes a hierarchi-
cal transformer structure to coherently model multi-tiered labels. However, the
application of hierarchical transformers may lead to issues of information and
parameter redundancy. Specifically, hierarchical labels can exhibit overlapping
information (for example, the ‘others’ category, as illustrated in Fig. 3), and
hierarchical networks might introduce excessive parameters when modeling re-
dundant content.
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Fig. 3: Hierarchical Class Integration via LLM. (1) Initial hierarchical classes
(a1-a4) are consolidated to eliminate redundancy, creating a processed class by filtering
out duplicate concepts. (2) The processed class is succinctly reformulated into a fixed-
length, semantically enriched descriptor via Large Language Model (LLM) synthesis.
The integrated sentence-level classes align closely with the inherited nature in CLIP.

To circumvent these challenges while harnessing the adaptable nature of the
CLIP text encoder, we propose a two-stage hierarchical label integration strat-
egy. As depicted in Fig. 3, our first stage involves curating labels to eliminate
redundant information and establish a set of collated labels via Large Language
Models (LLMs) such as GPT [1]. In the subsequent stage, we employ a set of
predefined prompt via LLMs with a fixed token length for label consolidation, to
craft the final label. This process ensuring a coherent and unified representation
of the hierarchical categories. Following the methodology of Sun et al. [38], we
then formulate prompt pairs, which are formalized as follows:

Prompt+ =
[
V +
1 , V +

2 , . . . , V +
N+ ,CLS

]
,

Prompt− =
[
V −
1 , V −

2 , . . . , V −
N− ,CLS

]
,

(1)

where V ±
i represents the learnable word embedding vectors, and CLS denotes

the class token, which is the generated of the Hierarchical Class Integration
(HCI) process. We concatenate the CLS with learnable prompts and feed them
into text encoder to obtain label embedding. Here, N+ and N− correspond to
the count of word tokens in the positive and negative prompts, respectively.
Sight-semantic Image Encoding: Recognizing the semantic divergence be-
tween visual and textual domains, we harness the extensive knowledge embedded
in CLIP. However, a substantial portion of this knowledge is oriented towards
sight representations, which diverges from our semantic-centric tasks. To har-
ness this rich pre-trained knowledge while aligning it with our goals, we have
augmented the CLIP architecture with a dual image encoder framework. Each
encoder is tailored for specific visual interpretations and shares the same archi-
tecture and initialization weights, as illustrated in Fig. 2 (b).

The Sight Encoder (SiE) remains frozen during training, specifically de-
signed to leverage the extensive sight knowledge within CLIP. It is adept at
capturing tangible visual features. In contrast, the Semantic Encoder (SeE)
is designed to be learnable. In a ResNet configuration, the initial layers, particu-
larly the first three, are kept frozen, as they typically capture fundamental visual
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elements like texture and color, which are crucial for subjective tasks. The deeper
layers, more focused on high-level semantics, are configured to be adaptable for
fine-tuning. This flexibility ensures that the SeE aligns with the subtleties of
semantic nuances. Together, the SiE and SeE form a cohesive strategy in our
IntCLIP framework. While a fixed structure offers stability, it lacks adaptability;
conversely, a fully adaptable structure risks losing CLIP’s sight knowledge. Our
dual encoder approach deftly navigates these challenges, offering a comprehen-
sive understanding of both tangible details and essential semantic nuances.

3.4 Sight-assisted Aggregation.

Direct concatenation or summation of sight and semantic feature maps offers
a rudimentary method for harnessing the richness of two information types in
intention classification. However, such a straightforward approach falls short in
adequately prioritizing the hierarchy of features, particularly in terms of using
sight features to enhance semantic ones. To overcome this limitation, we intro-
duce Sight-assisted Aggregation (SA), a technique that adaptively integrates the
context of sight features into the semantic feature maps. This technique under-
scores the supportive role of sight features in enhancing semantic feature maps,
as illustrated in Fig. 4.
Semantic Query Attention: Given a semantic feature map Msem ∈ RC×H×W ,
it undergoes convolution to yield two distinct subfeature maps:

Mq = Qconv(Msem),

Mk = Kconv(Msem),
(2)

where Mq and Mk act as query and key feature maps, respectively. Both are then
reshaped to RC×N , with N = H×W denoting pixel count. Matrix multiplication
between the transposed Mq and Mk follows, with a softmax layer applied to
produce the semantic attention map Ms ∈ RN×N :

Ms(i, j) =
exp(Mq

′(i) ·Mk
′(j))∑N

i=1 exp(Mq
′(i) ·Mk

′(j))
, (3)

where Mq
′ is the reshaped Mq and Mk

′ is the transposed, reshaped Mk. Positions
with similar features exhibit stronger correlations in this map.
Sight-assisted Modeling: The sight feature map Msig similarly undergoes
value convolution, resulting in Mv ∈ RC×H×W . After reshaping and multiplica-
tion with the transpose of Ms, the output is reshaped back and the final intention
feature map Mi is obtained by scaling with α and summing with Msig:

Mi(j) = α

N∑
i=1

(Ms(j, i) ·Mv
′(i)) +Msig(j), (4)

where Mv
′ is the reshaped Mv, and α, initially set to zero, is learned to assign

appropriate weight during training.
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Fig. 4: Semantic Query Attention and Sight-assisted Modeling work in tandem to
extract and integrate semantic query information with sight information.

From a high-dimensional perspective, the SA mechanism assigns weights to
the semantic feature map, integrating sight features–particularly object-related
information–into the semantic map to produce the final result. This mechanism
yields Mi, a feature map in which each position represents a contextually-aware
weighted combination of features. This selective aggregation process thereby
enhances the semantic coherence across the entire feature map.
Optimization. After deriving the final image representation Mi and the corre-
sponding positive/negative text representations Mp/n from Eq. (1), we calculate
the binary classification output p as:

p =
exp (⟨Mint,Mp⟩/τ)

exp (⟨Mi,Mp⟩/τ) + exp (⟨Mint,Mn⟩/τ)
, (5)

where ⟨·, ·⟩ denotes the dot product, and τ is the temperature parameter that
scales the logits.

Consistent with the methodology of Sun et al. [38], we utilize Asymmetric
Loss (ASL) [30] to facilitate the optimization process in multi-label intention un-
derstanding tasks. The loss calculations for positive and negative (image, label)
pairs, L+ and L−, denoted as:

L+ = (1− p)γ+ log(p),

L− = (pc)
γ− log(1− pc),

(6)

with pc = max(p − c, 0) representing the confidence-adjusted probability for
negative examples, influenced by a margin c. The hyperparameters γ− and γ+
are adjusted to satisfy γ− ≥ γ+, which allows Asymmetric Loss to effectively
down-weight and apply a hard threshold to easy negative samples. The learnable
prompts undergo iteratively refined through the back-propagation of Asymmet-
ric Loss within the confines of the non-trainable text encoder.
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4 Experiment

4.1 Datasets and Experiment Setups

Datasets. We evaluate the efficacy of IntCLIP in Multi-Intent Understanding
(MIU) using the Intentonomy dataset, comprising 12,740 training, 498 valida-
tion, and 1,217 test images from Unsplash, categorized into 28 intent classes.
IntCLIP addresses the discrepancy between subjective tasks and objective pre-
training data. We further assess its performance on Image Emotion Recognition
benchmarks EmotionROI_6 and FI_8 [27,52].
Evaluation Metrics. For intention understanding, we employ Macro F1, Micro
F1, and Samples F1 scores. Micro F1 calculates the unweighted mean of metrics
for each label, Macro F1 aggregates metrics globally, and Samples F1 averages
instance-level metrics. We assess model quality using the mean of these three
metrics. For Image Emotion Recognition, we utilize classification accuracy to
align with existing literature.
Implementation Details. In all baselines, we employ ResNet-101 [10] as the
visual encoder and maintain an input resolution of 224 × 224 pixels, ensuring
a fair comparison with existing CNN-based methods [38, 50]. The Transformer
architecture [29, 39] from CLIP [28] serves as our text encoder. Both the visual
and textual encoders, initialized from the CLIP model, are configured such that
the Sight Encoding branch and the text encoder remain fixed during training. For
each class or label, two independent context vectors are learned, each possessing
16 context tokens (N = 16) following [57]. Training employs the SGD optimizer
initialized at a learning rate of 0.002, which is adaptively decayed according to
the cosine annealing schedule. The context vectors are trained for 50 epochs,
using batch sizes of 32 and 16 for intention and emotion tasks, respectively. The
ASL parameters, γ+ = 1, γ− = 2, and c = 0.05, are selected based on prior
multi-label classification research [38].
Baselines. To underscore the effectiveness of IntCLIP, we benchmark it against
the following methods:

1. PIP-Net [41], CPAD [50], HLEG [33], and the original method within In-
tentonomy [17] are tailored for the MIU task. Their performances in the
MIU context are reported as per the strategies described in [33,41].

2. MultiGuard [16], SST [3] Query2Label [24] and DualCoOp [38] are crafted
for multi-label tasks. Specifically, DualCoOp leverages large-scale pre-trained
knowledge in multi-label recognition, employing a dual context prompting
strategy to enhance classification accuracy.

3. In the field of image-based emotion recognition task, we include ECWA [5],
WSEIP [53], CGLF-Net [25] and MSRCA [54] significant influence in the
field. With IntCLIP, we preserve consistent knowledge foundations across
both intention and emotion recognition, offering a comprehensive compara-
tive analysis.
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Table 1: Performance comparison of various multi-label classification and intention
understanding methods on the Intentonomy dataset, subdivided into Testing (2K im-
ages) and Validation (2K images) sets. #P indicates the number of learnable parame-
ters. Our IntCLIP models, with ResNet101 (R101) and Vision Transformer (ViT-B/32)
backbones, demonstrate superior performance. Gray indicates use of a more powerful
feature extractor (ViT).

Methods #P Intentonomy Testing (2K) Intentonomy Validation (2K)
MacroF1 MicroF1 SamplesF1 mAP MacroF1 MicroF1 SamplesF1 mAP

Multi-label classification methods
MultiGuard (Jia et al., 2022) [16] 53.6M 26.87 38.37 40.06 36.08 27.74 41.03 41.58 37.55
SST (Chen et al., 2022) [3] 33.5M 27.33 42.21 42.62 35.93 28.78 41.03 41.75 32.12
Query2Label (Liu et al., 2021) [24] 82.4M 32.12 44.64 45.15 34.33 35.35 46.34 47.40 36.86
DualCoOp (Sun et al., 2022) [38] 14.9M 31.06 44.42 40.40 39.33 32.67 46.29 42.97 40.93

Intention Understanding methods
Intentonomy (Jia et al., 2021) [17] 46.5M 23.98 31.28 31.39 - 25.07 32.94 33.61 -
CPAD (Ye et al., 2023) [50] 46.7M 27.39 40.98 41.12 - 27.37 41.77 42.68 -
HLEG (Shi et al., 2023) [33] 89.4M 32.77 44.69 45.54 35.93 35.35 46.34 47.40 36.86
PIP-Net (Wang et al., 2023) [41] 46.3M 32.57 45.94 47.05 - 30.71 44.84 45.48 -
LabCR (Shi et al., 2024) [32] 56.2M 34.63 48.51 48.05 37.13 37.10 49.04 49.71 38.86
Our IntCLIP (R101) 15.7M 38.40 50.54 49.31 42.66 40.09 50.68 48.99 42.84
Our IntCLIP (ViT-B/32) 22.6M 40.15 53.54 51.01 45.32 41.55 52.61 49.75 44.95

4.2 Multi-Label Intention Understanding

To evaluate the effectiveness of our proposed IntCLIP model, we undertook
a comprehensive comparative study on the Intentonomy dataset. This dataset
includes both a Testing and a Validation set. The comparative performance
results, as shown in Tab. 1, indicate how various state-of-the-art models fare
against our IntCLIP. We categorized the methods into two groups: (i) general
multi-label classification methods, and (ii) methods specialized in multi-label
intention understanding.

While general multi-label classification models like DualCoOp [38] have shown
promise, specialized methods for intention understanding, such as HLEG [33]
and PIP-Net [41], have demonstrated superior performance. Our proposed Int-
CLIP model surpasses the state-of-the-art, achieving a Micro F1 score of 50.54%
on the test set, an 11.2% improvement over previous best-performing models.
This advancement can be attributed to the synergistic integration of Hierarchi-
cal Class Integration, Sight-semantic Image Encoding, and CLIP’s foundational
cross-modal alignment knowledge. These components collectively enhance se-
mantic understanding of intentions, capture both objective and subjective nu-
ances, and ensure robust general cross-modal alignment.

It’s noteworthy that IntCLIP achieves rapid adaptation to intention tasks
with only 15.7 million learnable parameters for the ResNet101 (R101) backbone.
This is notably lower than that of competing methods, highlighting IntCLIP’s
efficiency3. Despite having 14.2 million additional parameters during inference
due to the extra semantic layers and aggregation module, this increase is deemed
worthwhile for boosting in understanding capacity. IntCLIP’s leaner architecture

3 For baselines without public released implementation, we estimate the major portion
of the learnable parameters based on descriptions in their respective papers.
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Table 2: Performance analysis when excluding individual components: Hierarchical
Class Integration (HCI), Sight-semantic Aggregation (SA), and Sight-semantic Image
Encoding (SIE). Their combined use boosts the model’s overall performance.

w/o Component Intentonomy Testing (2K)
SamplesF1 MacroF1 MicroF1 mAP

w/o HCI 44.74 36.18 47.05 39.81
w/o SA 47.25 35.15 47.46 39.42
w/o SIE,SA 44.71 35.52 45.91 39.02
Full IntCLIP 49.31 38.40 50.54 42.66

underscores its ability to deliver enhanced performance while ensuring compu-
tational efficiency.

4.3 Ablation Studies

Effectiveness of Proposed Components. Our framework integrates three
key components: Hierarchical Class Integration (HCI), Sight-assisted Aggrega-
tion (SA), and Sight-semantic Image Encoding (SIE). While each component
contributes to performance enhancement, as evidenced in Tab. 2, it is their com-
bined synergy that culminates in best performance. The comprehensive integra-
tion of HCI, SA, and SIE effectively maximizes alignment knowledge, endowing
the model with greater versatility and precision.
Optimizing Hierarchical Class Integration with LLMs. We investigated
various hierarchical label integration strategies for multi-label intention under-
standing on the Intentonomy Testing dataset (Tab. 3). The baseline method
using only ‘Fine-grained’ labels achieved a Macro F1 of 36.04% and Micro F1 of
46.46%. While the ‘Consolidation’ technique marginally improved these metrics,
it failed to fully leverage the hierarchical semantic structure. The Multi Layer
Transformer, inspired by HLEG [33], showed only slight improvements, likely
due to information and parameter redundancies.

Our proposed method significantly enhanced performance across all metrics
with varying content lengths. Optimal performance was achieved with 11-15
words, yielding a Macro F1 of 38.40%, Micro F1 of 50.54%, and mAP of 42.66%.
This demonstrates the efficacy of Large Language Models (LLMs) in generating
coherent and context-rich hierarchical labels. However, increasing content length
to 16-20 words led to mixed results, suggesting that overly verbose labels may
introduce superfluous information.

Our Hierarchical Class Integration (HCI) method effectively harnesses the
semantic richness of hierarchical labels while avoiding redundancy issues, es-
tablishing a new benchmark on the Intentonomy dataset and highlighting the
potential of LLMs in multi-label intention understanding tasks.
Sight-semantic Image Encoding Design. Sight-semantic Image Encoding
(SIE) plays a crucial role in aligning sight knowledge with the demands of se-
mantic tasks. An important observation from Tab. 4 is that fully training the
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Fig. 5: Encoder Focus Visualization in Sight-semantic Image Encoding. Orig-
inal images (top) with their intent labels and corresponding heatmaps from the sight
(middle) and semantic (bottom) encoders. The semantic encoder’s heatmaps show its
alignment with intent-relevant areas, demonstrating its enhanced capability.

visual feature extractor, whether in a single or dual-branch approach, often leads
to conflicts between sight knowledge and semantic alignment, resulting in di-
minished performance. In the single-branch setup, confining training solely to
semantic layers noticeably reduces the utilization of pre-trained knowledge. In
contrast, our dual-branch approach, which restricts training to the semantic lay-
ers, successfully navigates this challenge. This finding highlights our design’s
effectiveness, validating the dual-branch configuration as a more suitable solu-
tion for balancing pre-trained knowledge with task-specific requirements.

To further substantiate the efficacy of the Sight-semantic Encoding approach,
we utilized GradCAM visualization as illustrated in Fig. 5 [31]. The capability
of the semantic feature to identify relevant aspects within visual data, thereby
improving understanding, is clearly demonstrated across the first, second, third,
and fifth columns. Additionally, attention is drawn to the network’s emphasis
on other participants in the playing area in the fourth column, which aids in
the deduction of ‘Beat others’ within the label. The comparative analysis un-
derscores that, whereas the sight encoder targets visually prominent regions, the
semantic encoder zeroes in on zones that bear a closer relation to intention-
specific attributes. This differentiation is crucial for accurate intention recogni-
tion, highlighting the semantic encoder’s proficiency to link visual features with
underlying intentions.
Aggregation Function Analysis. The choice of aggregation function signifi-
cantly influences the model’s capacity to meld information from different sources.
Simple element-wise addition fails to sufficiently refine sight cue components, of-
fering inadequate guidance for semantic features. The Concat + MLP approach,
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Table 3: Comparison of Hierarchical Class Integration (HCI) by Large Language Mod-
els (LLMs) with varying context lengths against baseline methods on the Testing set.
The results demonstrate that HCI, especially with context lengths of 11-15 and 16-20,
outperforms fine-grained label, consolidated label and multi-layer methods, indicating
the effectiveness of sentence-level prompt in improving intention understanding.

Methods Context Length Intentonomy Testing Set (2K)
MacroF1 MicroF1 SamplesF1 mAP

Fine-Grained - 36.04 46.46 44.48 38.44
Consolidation - 36.18 47.05 44.74 39.81
Multi Layer [33] - 36.52 46.96 44.98 38.81

HCI by LLM

3-5 37.02 47.98 45.63 40.35
6-9 38.68 49.43 46.67 42.34

11-15 38.40 50.54 49.31 42.66
16-20 37.76 50.80 46.05 42.03

Table 4: Comparison of various encoder designs. This showcases the conflicts arising
from training all layers and the superiority of Sight-semantic Image Encoding.

Various Visual Encoder Designs Intentonomy Testing (2K)
Brunch Training Layer MacroF1 MicroF1 SamplesF1 mAP

Single ✗ 34.53 43.84 43.43 38.63
Single All 9.85 23.18 19.95 12.42
Single Semantic 35.76 46.83 44.25 39.88
Dual ✗ 36.85 47.73 44.99 40.35
Dual All 6.28 22.64 18.89 14.02
Dual Semantic 38.40 50.54 49.31 42.66

Table 5: Analysis of different aggregation methods. Our Sight-assisted Aggregation
(SA) offers a more judicious selection of information, leading to enhanced aggregation.

Aggragation Methods Intentonomy Testing Set (2K)
MacroF1 MicroF1 SamplesF1 mAP

Element-wise Addition 35.15 47.46 47.25 39.42
Concat + MLP 35.30 46.94 46.85 40.51

Ours 38.40 50.54 49.31 42.66

while more intricate, risks missing key information during the MLP phase. Our
SA approach excels by selectively integrating sight features, achieving a more
comprehensive aggregation, as demonstrated in Tab. 5.
Generalization to Image Emotion Recognition. A critical aspect of our
approach involves recognizing and addressing the disparities between sight and
semantic image-text pairs in subjective tasks. Image-based Emotion Recognition
(IER) falls squarely within this scope. To validate the generalization of our
method, we conducted evaluations on the EmotionROI_6 and FI_8 datasets.
The results, as illustrated in Tab. 6 (a), not only demonstrate our method’s
ability to bridge the disparity but also establish new benchmarks in IER. These
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Table 6: Generalization analysis of IntCLIP and HCI. (a) Performance on Image
Emotion Recognition (IER) task. (b) Effectiveness of HCI. HCI–FG indicates that
only with fine-grained labels.

(a) Generalization to IER.

Methods Emo6 FI8

ECWA [5] 59.09 70.87
WSEIP [53] 60.41 75.91
MSRCA [54] 55.60 72.60
CGLF-Net [25] 65.01 75.61
IntCLIP (R101) 71.05 78.93

(b) Generalization of HCI.

Methods Macro F1 Micro F1 Samples F1

HCI 41.55 52.61 49.75
HCI-FG 41.33 52.14 50.14

[33] 35.35 46.34 47.40
[33]+HCI 36.47 48.20 48.64

outcomes highlight the robustness of IntCLIP in subjective task domains. We
believe the insights on combination of sight and semantic information would be
beneficial to other high-level semantic understanding tasks.
Generalization of HCI. The results in Tab. 6 (b) highlight two key aspects
of HCI. HCI-FG represents an exploration of using only fine-grained labels to
generate integrated labels, demonstrating the method’s adaptability. The com-
parable performance of HCI-FG to standard HCI showcases the broad applica-
bility of HCI. Additionally, the improvement when HCI is combined with other
approaches, such as HLEG, underscores its effectiveness as a general technique.

5 Conclusion

We addresse the complexities of Multi-label Intention Understanding (MIU) in
social media imagery, where intentions often transcend visual elements. We in-
troduce IntCLIP, a model designed to overcome the challenge of limited anno-
tated data by synergizing sight knowledge with semantic intention cues. The
key features in IntCLIP include Sight-semantic Image Encoding, Hierarchical
Class Integration, and Sight-assisted Aggregation, enhancing its capacity for
deep understanding in MIU tasks. Empirical evaluations demonstrate the supe-
rior performance of IntCLIP over established techniques in MIU benchmarks and
specialized tasks such as Image Emotion Recognition. By leveraging large-scale
multimodal pre-training, IntCLIP significantly advances the field, enabling more
nuanced interpretations of intentions in social media imagery and contributing
to the broader understanding of digital communication.
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