
Fisher Calibration for Backdoor-Robust
Heterogeneous Federated Learning

Wenke Huang1, Mang Ye1,2⋆, Zekun Shi1, Bo Du1, and Dacheng Tao3

1 National Engineering Research Center for Multimedia Software, School of
Computer Science, Wuhan University, Wuhan, China

2 Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
3 Nanyang Technological University, Singapore

{wenkehuang,yemang}@whu.edu.cn

Abstract. Federated learning presents massive potential for privacy-
friendly vision task collaboration. However, the federated visual perfor-
mance is deeply affected by backdoor attacks, where malicious clients
optimize on triggered samples to mislead the global model into targeted
mispredictions. Existing backdoor defensive solutions are normally based
on two assumptions: data homogeneity and minority malicious ratio for
the elaborate client-wise defensive rules. To address existing limitations,
we argue that heterogeneous clients and backdoor attackers both bring
divergent optimization directions and thus it is hard to discriminate them
precisely. In this paper, we argue that parameters appear in different im-
portant degrees towards distinct distribution and instead consider mean-
ingful and meaningless parameters for the ideal target distribution. We
propose the Self-Driven Fisher Calibration (SDFC), which utilizes the
Fisher Information to calculate the parameter importance degree for the
local agnostic and global validation distribution and regulate those el-
ements with large important differences. Furthermore, we allocate high
aggregation weight for clients with relatively small overall parameter
differences, which encourages clients with close local distribution to the
global distribution, to contribute more to the federation. This endows
SDFC to handle backdoor attackers in heterogeneous federated learning.
Various vision task performances demonstrate the effectiveness of SDFC.
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1 Introduction

Federated learning has evolved as a prominent collaborative technique [42, 54,
114,120], which allows multiple clients to jointly train a shared global model with-
out centralizing distributed data [21, 55, 57, 70] and thus adhere to the privacy
protocol [69,79,95]. However, the federated paradigm is vulnerable to backdoor
attacks [12,22,23,58,60]. Specifically, the malicious party makes normal predic-
tions on benign samples and outputs the pre-manipulated label when the input
⋆ Corresponding Author: Mang Ye



2 Wenke. Author et al.

contains a specific pattern trigger [7,18,37,92]. Thus, the federated model would
be implanted with the backdoor trigger pattern, which largely threatens the fed-
erated robustness. We argue that conducting the backdoor defense to erase the
backdoor effect is vital for the federated reliability in the real-world application.

Existing backdoor defense could be categorized into the following three streams:
Distance Difference Defense [6, 10, 20, 26, 93], Statistics Distribution Defense
[24,115], and Model Refinement Defense [11,50,104]. The former two types utilize
either individual distance differences or overall statistical characteristics based on
the local updates to conduct outlier-resilient operations. The Model Refinement
Defense re-optimizes the aggregated global model to erase the possible backdoor
threat, such as fine-tuning [104], ensemble distillation [32,50,61], bayesian learn-
ing [11,100,117], and certified optimization [9,14,48,78,107,109,118]. However,
the aforementioned methods predominantly rely on two assumptions: distributed
data homogeneity and minor malicious clients. These assumptions are crucial to
ensuring the benign and malicious update difference and overall direction cor-
rectness to introduce different crafted client-wise selection, which appears
serious rule adjustment for different realistic settings. The reason is attributed
to the challenge posed by the backdoor attackers under heterogeneous feder-
ated learning. The backdoor attacker is compelled to learn two different data
distributions: regular data distribution and poisoned data distribution. The het-
erogeneous client presents non-independently identical property. Consequently,
both benign heterogeneity and malicious backdoor clients deviate far from the
ideal global distribution. Therefore, it is hard to discriminate the participant
behavior from the client-wise aspect.

In this paper, we instead investigate from the adaptive parameter-wise
selection. Own to the over-parameterized characteristics of the deep neural
network [25,45], different neurons present the distinct importance on fitting the
target distribution [47, 51, 73, 88, 105, 121]. Therefore, we assume that for the
client with relatively large parameter importance difference between local and
validation distribution could be regarded as the troublemaker. Thus, we consider
utilizing a few clean validation samples, a practice already adopted in prior
studies [8,13,50,61,76,80,111] to measure the client distribution characteristics.
However, existing methods normally utilize empirical metrics such as predictive
entropy and classification error, which inadvertently fall prey to backdoors as
they maintain accuracy on benign samples without specific triggers [38,119].

Driven by the above analysis, we propose a simple yet effective Self-Driven
Fisher Calibration, abbreviated as SDFC, for backdoor-robust heterogeneous
federated learning from both client-side optimization and server-side aggrega-
tion. Inspired by the success of Fisher Information Matrix (FIM) [3, 19], which
quantifies the model information content by accessing the loss surface sharp-
ness [41, 72, 81]. Specifically, under the same noise perturbation, those infor-
mative parameters play a crucial role in achieving precise task prediction that
would lead to more serious performance degradation, reflected in the larger loss
curvature [35, 38]. Therefore, for each client, we utilize the optimized model to
calculate the parameter importance degree on both local distribution and val-
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Table 1: Drawbacks for backdoor defense solutions. See Sec. 2.3.
Drawback Distance Statistics Refinement Ours
< 50% Evils ✓ ✓ ✓ ✗

Data Homogeneity ✓ ✓ ✗ ✗
Client-Wise Rule ✓ ✓ ✓ ✗

idation distribution, and further acquire the parameter importance difference
matrix. Therefore, we introduce the Fisher Difference Regularization, which pe-
nalizes those parameters with distinct importance between idea target distribu-
tion and agnostic client distribution, during the local client updating. We argue
that controlling the parameter with clearly important differences would hinder
the local model from absorbing the disturbed knowledge, which alleviates the
backdoor effect in a self-driven paradigm. Furthermore, during the aggregation,
we propose Fisher Discrepancy Aggregation, which allocates lower aggregation
for those with larger overall parameter importance difference values. We con-
tend that it encourages clients with appropriate local distributions to contribute
more to the federated system, while excluding those with distorted distributions,
particularly those containing implanted backdoor triggers [4, 110]. We conduct
extensive experiments on various heterogeneous federated scenarios [34, 44, 46]
under the backdoor attack [22,23]. Experimental results reveal that ours consis-
tently achieves stronger robustness than other methods. The main contributions
are summarized as follows:
– We concentrate on the backdoor robustness in heterogeneous federated learn-

ing and reveal that existing defensive solutions conduct intricate client be-
havior discrimination. We challenge the viability of achieving backdoor de-
fense in heterogeneous federated learning via self-driven manner without the
need for explicitly crafted rules.

– We argue that parameters act with different importance for fitting target
distribution and introduce the Self-Driven Fisher Calibration (SDFC), which
utilizes validated samples to calculate the parameter importance difference
between the global and client distributions. This discrepancy governs the
local updating and allocates higher parameter aggregation weight for clients
with less parameter importance difference. This endows SDFC to enhance
the backdoor-robust in heterogeneous federated learning.

– We conduct experiments on various datasets: Cifar-10, MNIST, and Fashion-
MNIST, under the backdoor attack. We validate the efficacy of the proposed
SDFC and the confirm indispensability of essential modules.

2 Related Work

2.1 Federated Learning with Data Heterogeneity

Federated learning has gained widespread popularity as a collaborative solution,
adhering to the security privacy protocols [42,43,54] and brings various realistic
applications [27,62,71,82]. Formally, the federated optimization can be regarded
as minimizing the weighted empirical loss among participating clients as the
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following formulation:

min
w

K∑
k=1

αkFk(w,Dk), (1)

where K means the participants group and w denotes the shared global network.
For the kth client, αk denotes the pre-allocated aggregation weight (

∑K
k=1 αk=

1), Dk represents the private data set and Nk = |Dk| means the corresponding
private data scale. ξ = (x, y) is the query instance. Fk(w,Dk) represents the
client-specific loss such as cross-entropy loss [15], expressed as:

Fk(w,Dk) =
1

Nk

∑
(x,y)∈Dk

LCE(x, y), (2a)

= E(x,y)∈Dk
[− log p(y|x,w)], (2b)

A =

∑
ξ∈S 1(max(z) = y)

|S| . (2c)

We denote the logits output as z=w(x), predictive distribution as p=softmax(z).
Thus, federation aims to improve the Top-1 accuracy, A on the testing dataset
S. However, federated performance is largely restricted by data heterogeneity.
Heterogeneity means that the distributed data presents the non-independent and
identically distribution and brings the various local updating directions, which
leads to slow convergence speed and limited global accuracy [29,101]. Following
the de facto solution, FedAvg [70], a plethora of efforts have been introduced
to alleviate the data heterogeneity among private data and leverage different
global guidance signals, e.g ., global model parameter [21, 49, 55, 57, 64, 88, 112],
shared extra network architecture [28, 40, 56, 98], global semantic information
[33,65,74,122], and so on. Although these advanced methods improve the feder-
ated performance by a meaningful margin, they are constrained in the trustwor-
thy client assumption. Specifically, they fail to resist backdoor attacks and their
effectiveness can be arbitrarily manipulated by malicious backdoor attackers in
federation [5,31,92]. Our Fisher Difference Regularization addresses this limita-
tion by calculating and regulating the parameter importance difference degree
between local and validation distribution, thereby simultaneously adjusting the
heterogeneous and backdoor optimization directions.

2.2 Federated Learning with Backdoor Attack

Backdoor attack is initially proposed to poison deep learning models by injecting
Trojans into the victim models by poisoning the training dataset [12, 22, 36, 59,
94, 102]. In particular, we define Φ as the trigger pattern and m as the trigger
location mask. The modified backdoor instance as ξ̃ = (x̃, ỹ). x̃ = (1 −m) ⊙
x + m ⊙ Φ. Flip the original label y into the preset attack target ỹ. Thus, the
original local direction in Eq. (2b) would be reformulated into:

Fk(w, D̃k) =
1

|D̃k|
[
∑
ξ∈D̃k

LCE(x, y) +
∑
ξ̃∈D̃k

LCE(x̃, ỹ)︸ ︷︷ ︸
Backdoor

], (3a)

R = 1−
∑

ξ̃∈S̃ 1(max(z̃) = ỹ)

|S̃|
. (3b)
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R denotes the backdoor failure rate. Pioneering studies on backdoor threats
against federated learning systems assume that each malicious participant indi-
vidually trains their local models without any collusion among evils [4, 20, 99].
Recently, advanced attacks focus on the distributed backdoor paradigm [17, 17,
66,110] and dynamic backdoor solution [30,52] to evade the secure detection so-
lutions. Thus, constructing effective backdoor defense acts as a crucial character
in ensuring the robustness for federated learning.

2.3 Backdoor Defense in Federated Learning

To deal with backdoor attackers in federated learning, existing backdoor defense
solutions could be basically classified into three major categories: i) Distance Dif-
ference Defense solutions [6,20,75,87,97,106] normally compare the local party
updates difference and regard those significantly far from the overall direction
as evils, excluded from the aggregation process. For example, Multi Krum [6]
selects the candidate gradient that is the closest to its neighboring clients. Fools-
Gold [20] leverages cosine similarity to identify malicious clients and allocate low
weight. ii) Statistics Distribution Defense schemes [24,83,96,115] introduce dif-
ferent mathematical statistics metrics to select and circumvent malicious clients.
For instance, RFA [83] calculates the geometric median with an alternating mini-
mization function. Bulyan [24] cooperates [115] and trimmed median to conduct
a two-step meta-aggregation algorithm. Despite the certain advantages of the
above two streams, they basically rely on the data homogeneity (i.e., indepen-
dent and identically distribution) assumption and thus are not applicable under
data heterogeneous federated learning. They are sensitive to the malicious scale,
which is normally hypothesized to be constrained into a certain range to guar-
antee overall updating correctness. iii) Model Refinement Defense efforts focus
on refining the aggregated model to erase the possible backdoor attacks via the
ensemble distillation [32,50,61,89], Bayesian learning [11,100,116,117], and cer-
tified optimization [9,14,48,78,107,109,118]. For instance, RLR [77] adjusts the
server learning rate along with the network dimension and communication epoch.
CRFL [109] controls the global smoothness via the clipping and smoothing op-
erations. Notably, they rely on meticulous hyperparameter tuning to mitigate
the catastrophic forgetting of the original task and are also limited to minor
attacker assumptions for major voting. We argue that the Achilles heel for ex-
isting methods is that they conduct the client-wise defense where heterogeneous
and malicious clients both present divergent optimization directions, leading to
a lack of clear disentanglement. Therefore, existing methods acquire strong as-
sumptions for minor malicious proportion or the data homogeneity, illustrated in
Tab. 1. However, we calculate the parameter importance degree on both target
distribution and local agnostic distribution in a self-driven manner. We regulate
the parameter elements with substantial importance discrepancies during local
optimization and adjust the aggregation weights based on the overall client pa-
rameter importance difference. Our solution enhances the backdoor robustness
in heterogeneous federated learning.
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3 Methodology

3.1 Motivation

In our work, we expect to measure the parameter importance degree for the
target distribution. Notably, Fisher Information Matrix (FIM) [19] is a popular
and feasible metric [41, 63, 68, 88], which quantifies the information carried by
the observable random variable about the unknown parameters w of the target
distribution D and is formulated as the following form:

M(D) = E(x,y)∈D[∇ log p(y|x,w) · (∇ log p(y|x,w))T ]. (4)
The expectation is often approximated using the empirical distribution D. No-
tably, the Fisher Information Matrix could be regarded as the importance metrics
on how much the perturbation of the weights affects the network output [3]. Be-
sides, Fisher Information Matrix could also be seen as an approximation to the
Hessian of the loss function [67], and hence describe the loss surface curvature for
the w during the optimization. However, due to the over-parameterized network,
the computation of Fisher information is unacceptable, i.e., M(D) ∈ R|w|×|w|.
To save the computational effort, Fisher Information Matrix could be approxi-
mated as the diagonal matrix as:

M(D)≈E(x,y)∈D∇ log p(y|x,w)2 ∈ R|w|. (5)
The empirical Fisher has the same size as the network weight, and each element in
FisherM(D) signifies the importance of the corresponding element in weight w
for the target distribution D. Consequently, we define the parameter importance
for the query element v ∈ w on the target distribution D as follows:

Iv(D) = M(D)[v]

= Eξ∈D (∇wv log p(y|x,w))2 .
(6)

Therefore, we could utilize the Iv(D) as the neuron element v importance metric
for the target distribution D.

3.2 SDFC: Self-Driven Fisher Calibration

Core Idea. From the Eq. (5), we can find that the affinity M(D) gives the
influence of parameter elements on the target distribution D. We argue that
for the agnostic local distribution Dk, it would be highlighted when it exhibits
a higher similarity in parameter importance degree with the clean validation
distribution U , and penalized when the similarity is lower. Specifically, as illus-
trated in Eqs. (2a) and (2b), the distributed model wk ∈ R|w| is required to
fit the local distribution via the cross-entropy loss. The updated parameter is
formed as wk ← wk − η∇wF (wk, Dk), where η is the learning rate. Therefore,
after the local updating, we calculate the Fisher Information Matrix for the wk

on the local distribution Dk and clean validation datasets U as:
Mk(Dk)=E(x,y)∈Dk

∇ log p(y|x,wk)
2. (7a)

Mk(U)=E(x,y)∈U∇ log p(y|x,wk)
2. (7b)
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Fig. 1: Schematization of Self-Driven Fisher Calibration (Sec. 3.2). We utilize FIM
to calculate parameter important matrix on local Mk(Dk) and validation Mk(U) dis-
tributions to measure importance difference Hk as 6 =| 6 - 12 |. Fisher Difference
Regularization (Sec. 3.2) regulates those parameters with large distinct importance.
Fisher Discrepancy Aggregation (Sec. 3.2) allocates high aggregation weight for
those with small parameter important discrepancy. We illustrate with network scale
|w|=4 and class number |C|=5. Best viewed in color. Zoom in for details.

Therefore, for the client k, the parameter important difference Hk could be
defined as the following expression:

Hk=[Hk,1, . . . ,Hk,v, . . . ,Hk,|w|] ∈ R|w|, (8a)
Hk,v= |Ik,v(Dk)− Ik,v(U)| ≥ 0, (8b)

= |Mk(Dk)[v]−Mk(U)[v]|,
For benign clients with large local heterogeneity or malicious clients with poi-
soned data, corresponding Hk would appear as the large value. On the contrary,
Hk would present a relatively small value or even zero. Basically speaking, we
holistically explore regulating the benign heterogeneous direction and weaken
the malicious backdoor effect via the Hk from both client-side optimization and
server-side aggregation.

Fisher Difference Regularization Given that training data resides in each
client, and the local updating process in Eq. (2a), we deem that vanilla cross-
entropy loss encourages the private model to blindly absorb the local knowl-
edge [103]. Thus, cross-entropy loss naturally optimizes the overall parameter
to fit the local distribution and fails to discriminate whether a parameter is
more important to clean or poison distribution. Therefore, such a lack of dis-
crimination may allow drastic changes to the parameters responsible for learned
clean distribution. Therefore, we introduce the Fisher Difference Regularization
(FDReg) to regulate the local objective for the current updating parameter wt

k

at the tth communication epoch as:

LFDReg=LCE(x, y)+λ

|w|∑
v

Hk,v×(wt
k,v−wt−1

k,v )2. (9)
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Hk,v is calculate based on the previous optimized local model wt−1
k . λ is the

penalization hyper-parameter for parameter importance difference. Intuitively,
the FDReg allocates high flexibility (small Hk,v) for those parameter elements
with similar importance levels to fit the local data via the Cross-Entropy [15]
loss. Besides, FDReg adds a strict parameter stiffness (large Hk,v) for those
with different importance. Therefore, the local model is regularized towards re-
membering the clean target distribution and thus alleviates the distorted local
direction caused by the benign heterogeneity and malicious backdoor.
Fisher Discrepancy Aggregation Furthermore, we note the existing aggre-
gation weight, αk in Eq. (1) is typically based on either data scale: αk=

Nk∑K
k Nk

or participant scale: αk =
1
K . We argue that popular aggregations overlook the

local distribution reliability and should allocate higher weight to those shar-
ing similar distribution characteristics with the target distribution. As discussed
above, the distribution difference could be reacted in the parameter importance
inconsistency aspect. Thus, we reconstruct the aggregation weight for the client
k via the parameter important difference degree Hk ∈ R|w|, as:

T = [

|w|∑
v

H1,v, . . . ,

|w|∑
v

Hk,v, . . . ,

|w|∑
v

HK,v] ∈ RK ,

Max−Min ⇓ T̂k∈
Tk −min(T )

max(T )−min(T )
∈ [0, 1],

T̂ = [T̂1, . . . ,T̂k, . . . , T̂K ],

αk =
σ(−T̂k)∑
k σ(−T̂k)

.

(10)

Tk denotes the sum of parameter importance difference, Hk, for the client k. We
further conduct the max-min normalization to eliminate the deep neural network
scale effect. We utilize the −T k to denote the client k aggregation weight since
the more similar the local contribution with the target validation distribution,
the larger the contribution. In each communication epoch, the server collects the
updated local models and their respective FIM on the local distribution, denoted
asMk(Dk), and calculates the Fisher Information Matrix on the clean validation
set U as Mk(U). Subsequently, the server computes the parameter importance
differenceHk for further parameter aggregation reweighting in Eq. (10) and local
client optimization in Eq. (9).

3.3 Discussion and Limitation

Difference with Existing Defense via Validation samples. Existing meth-
ods, including FineTuning [84], FLTrust [8], and Sageflow [80], also utilize related
proxy data for evaluation selection. However, they primarily rely on empirical
optimization metrics such as sample entropy and overall classification error to de-
termine client behavior. These metrics reflect federated benign task performance
(Eq. (2c)), and backdoor attacks do not adversely impact respective performance.
Consequently, these solutions fall short of actively eliminating the backdoor ef-
fect. Importantly, our solution eliminates the reliance on empirical performance



Abbreviated paper title 9

Table 2: Ablative experiments of Parameter Importance Metrics, Hk,v for
Fisher Difference Regularization (FDReg Sec. 3.2) on MNIST, Fashion-MNIST, and
Cifar-10 (β=0.5, Υ = 30%). Please see Sec. 4.2 for explanations.

MNIST Fashion-MNIST Cifar-10Iv(D) A R V A R V A R V
|∇ log p(y|x,w)| 87.82 87.29 87.55 86.60 82.65 84.62 23.98 92.74 58.36
∇ log p(y|x,w)2

Eq. (6)
97.92 88.01 92.96 84.30 88.26 86.28 58.73 70.12 64.42

indicators. Instead, we focus on the network self-behavior difference between the
client distribution and the target distribution to regulate local optimization and
reallocate aggregation weight for backdoor robustness in heterogeneous feder-
ated learning. Fig. 4 demonstrates that Self-Driven Fisher Calibration achieves
stable and high performance with varying validation sample scales.
Related Fisher-Based Investigations. Fisher Information Matrix FIM [2,3,
19] effectively encapsulates the unknown parameter information for a random
distribution [35, 39, 67] and has attracted wide application in different research
fields. [41,63,72] measures the parameter stiffness based on the past sample dis-
tribution to alleviate catastrophic phenomena on the historical class prediction
in the continual learning field [16]. Besides, FIM is utilized to evaluate the crit-
ical training stage [113] and enhance the model generalization [85, 121]. Closely
relative method, FedCurv leverages the FIM for the personalized federation.
However, all these methods regulate updates based on the parameter impor-
tance for the target distribution. SDFC measures the parameter importance
difference between agnostic client distribution and clean validation distribu-
tion, highlighting those with a similar distribution and penalizing those with
divergent distribution, as shown in Tab. 4.
Limitation. SDFC leverages the validated dataset (U) to conduct Backdoor-
robust solution in heterogeneous federated learning. However, our method fails
in certain circumstances. (i) The server is required to collect the clean samples
for the current federated tasks, which is widely adopted in closely related meth-
ods [1, 28, 61, 90]. Furthermore, SDFC achieves the stable performance with the
|U | = 16 in Fig. 4. (ii) SDFC calculates the parameter importance degree for the
specific distribution. The original measurement solution requires second-order
derivatives with a complexity of O(|w| × |w|). However, SDFC utilizes Fisher
Information Matrix to approximate the parameter importance and reduces the
calculation complexity to O(|w|). (iii) SDFC considers that the backdoor de-
fense from the client side and thus requires the client to execute the proposed
regularization term. Thus, ours falls short of eliminating adaptive attacks, where
clients maliciously refuse to obey the pre-defined optimization strategy.

4 Experiments

4.1 Experimental Setup

Datasets. Following [55,74,111], we experiment on three federated scenarios.
– MNIST [46] is 10 digits classes with 70,000 images.
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Υ = 30%
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80.21 

88.21 87.98 
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V
Υ 1 5 10 20

30% 81.79 92.97 92.48 91.78
50% 78.96 89.48 93.45 93.25

Fig. 2: Ablation on the hyper-parameter λ (Eq. (9)) in FDReg for the proposed
method on MNIST with Υ ∈{30%, 50%}. A ( ) and R ( ). We default set λ=5 in the
following experiments. Refer to Sec. 4.2 for detailed information.
Table 3: Ablation on key components for SDFC in MNIST, Fashion-MNIST,
Cifar-10 with β=0.5 and Υ =30%. The λ (Eq. (9)) for FDReg is 5. See Sec. 4.2.

FDReg FDAgg MNIST Fashion-MNIST Cifar-10
Sec. 3.2 Sec. 3.2 A R V A R V A R V

99.15 0.71 49.93 88.32 0.71 44.51 64.53 33.16 48.84
✓ 97.92 88.01 92.96 84.30 88.26 86.28 58.73 70.12 64.42

✓ 99.13 1.55 50.34 88.24 7.57 47.90 65.88 48.63 57.25
✓ ✓ 97.96 89.00 93.48 85.10 91.13 88.11 62.87 87.91 75.39

– Fashion-MNIST [108] has 60k train and 10k test examples from 10 classes.
– Cifar-10 [44] has 10 semantics with 50k, 10k images for training, validation.

As for the data heterogeneity simulation, we utilize Dirichlet distribution: Dir(β)
to simulate the label skew, as previous methods [55,57], where β > 0 is the con-
centration parameter to adjust the class skewed level. The smaller β is, the more
imbalanced the local distribution is. We set the β as 0.5 and 1.0 for comparison.
Counterparts. We compare with three type backdoor defense solutions.
i) Distance Difference Defense:
– FoolsGold [arXiv’18] [20]: Identify sybils effect via inter-client similarity.
– DnC [NDSS’21] [87]: Singular value decomposition for outliers detection.
– Sageflow [NeurIPS’21] [80]: Combine entropy filtering and loss reweighting.

ii) Statistics Distribution Defense:
– Trim Median [ICML’18] [115]: Dimensionally remove the abnormality, based

on the coordinatewise trimmed mean.
– Bulyan [ICML’18] [24]: Agree on each coordinate by major vectors, selected

by Byzantine–resilient aggregations.
– RFA [TSP’22] [83]: Leverage the geometric median and the smoothed Weiszfeld

algorithm to aggregate updates.
iii) Model Refinement Defense:
– RSA [AAAI’19] [53]): Norm regularization and stochastic subgradient.
– Finetuning [84]: Directly optimizes the aggregated global model on vaidation.
– RLR [AAAI’21] [77]: Adjust the aggregation server learning rate, along with

dimension and communication aspects.
– CRFL [ICML’21] [109]: Exploit clipping and smoothing operations.
– FLTrust [NDSS’21] [8]: Utilize ReLU-clipped similarity to allocate trust score.

Backdoor Attacks. We demonstrate the effectiveness of the proposed method
under the popular paradigm [22, 23, 26]. The size of the backdoor is set to 2×6,
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Table 4: Ablation study of Parameter Evaluation Matrix, Hk,v for Fisher
Difference Regularization (FDReg Sec. 3.2) on MNIST, Fashion-MNIST, and Cifar-10
(β=0.5, Υ = 30%). Please see Sec. 4.2.

MNIST Fashion-MNIST Cifar-10Hk,v A R V A R V A R V
M(Dk)[v] 98.46 87.76 93.11 85.87 89.15 87.51 62.71 54.19 58.45
M(U)[v] 98.44 59.06 78.75 86.60 70.72 78.66 62.03 34.63 48.33

|M(Dk)[v]−M(U)[v]|
Eq. (8b)

97.96 89.00 93.48 85.10 91.13 88.11 62.87 87.91 75.39

Federated Benign Performance Backdoor Failure Rate
98.33 97.96

96.71

94.40 

90.27
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96

100
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88.51

89.00 88.91
88.71

88.02

85

86

87

88

89

90

5 10 20 30 40

E V
5 93.42
10 93.48
20 92.81
30 91.55
40 89.14

Fig. 3: Ablation on local epoch E on MNIST (β = 0.5) with Υ = 30% for the
federated benign performance A (Left), backdoor failure rate R (middle) and the trade-
off V (Right). Refer to Sec. 4.2 for explanation.

and its location is in the top-left corner of the images. We convert the attacked
label to the second class (i.e., 2 in Digits). We set the malicious client ratio Υ
as {0.3, 0.5}. The local data poisoned portion is default set as 0.5.
Network Structure. Following [33,55,74], we utilize the CNN as the backbone
for MNIST, Fashion-MNIST, and Cifar-10.
Implement Details. We provide the details from three views as:
– Validation U Construction: We partition the original training data into train-

ing and validation sets with a 9:1 ratio. We select a small-scale validation,
(i.e., 256). We conduct the ablation on various validation scales and achieve
stably satisfying performance with only 16 samples in Fig. 4.

– Training Setting: For a fair comparison, we follow [55, 57, 74]. We configure
the communication epoch T as 50, where all approaches have little or no
accuracy gain with more communications. The client number K is 10 for
different datasets. For local training, we leverage the FedAvg [70] as the
default local optimization objective. The local updating round is E : 10 for
different settings. We utilize the SGD as the local updating optimizer. The
corresponding weight decay is η :1e−5 and momentum is 0.9. The local client
learning rate is 0.01 in the above three scenarios. We fix the random seed to
ensure reproduction and conduct experiments on the NVIDIA 3090Ti.

– Evaluation Metric: Following [26, 55, 57, 70], Top-1 accuracy is adopted for
federated benign performance, A in Eq. (2c). We further define the
backdoor failure rate as R in Eq. (3b). Furthermore, we define the V to
measure the heterogeneity and robustness trade-off as:

V =
1

2
(A+R). (11)

We utilize the mean performance value of the last five communication epochs
as the final evaluation results.
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Fig. 4: Ablation on Validate Data Scale |U | in Cifar-10 (β = 0.5, Υ = 30%)
with federated benign performance A (Left), backdoor failure rate R (middle) and the
trade-off V (Right). Refer to Sec. 3.3.
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Fig. 5: Ablation on Client scale K on Cifar-10 (β = 0.5, Υ = 30%) with the popular
counterpart. Refer to Sec. 4.2 for detailed discussion.

4.2 Diagnostic Experiments

For a thorough analysis, we perform a set of ablative studies on MNIST and
Cifar-10 scenarios with label skew β=0.5 and malicious ratio Υ =0.3
Control Hyper-Parameter λ in Eq. (9). The Fig. 2 quantifies the effect of
hyper-parameter λ, which measures the strength of parameter importance dif-
ference penalization for different scenarios. Specifically, the heterogeneity and
robustness trade-off metric V (Eq. (11)) progressively mounts as λ enlarges, and
the improvement presents marginal under strict parameter stiffness. For conve-
nience, we choose the λ = 5 for different scenarios in the following experiments.
Parameter Evaluation Matrix Selection. As for Fisher Difference Regular-
ization (FDReg Sec. 3.2), we evaluate the parameter stiffnessHk,v selection based
on the FIM difference between the target and local distribution in Eq. (8b). How-
ever, the naive solution is to trust either client distribution Hk,v = M(Dk)[v]
or validated distribution Hk,v = M(U)[v]. Tab. 4 illustrates that they bring
modest effectiveness in backdoor removal effect. This can be attributed to their
inherent limitation of not placing sufficient emphasis on the relative importance
of different parameters during local updating.
Training Objective. We quantitatively analyze the proposed SDFC. In Tab. 3,
combining Fisher Difference Regularization (FDReg) and Fisher Discrepancy
Aggregation (FDAgg) acquires satisfying federated benign task and backdoor
removal performance that coincides with our motivation of exploiting the pa-
rameter importance difference for local regularization and server aggregation.
Parameter Importance Metrics. For the parameter importance metric Iv(D)
in Eq. (6), we employ the approximate value of the second-order derivative to
represent the Fisher information. A more straightforward alternative is to di-
rectly utilize the absolute gradient value to depict parameter importance, as
adopted in related methods [26, 91]. As demonstrated in Tab. 2, leveraging the
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Table 5: Comparison with the state-of-the-art backdoor robust solutions:
in the MNIST, Cifar-10, and Fashion-MNIST scenarios with skew ratio β ∈ {0.5, 1.0}
and malicious proportion Υ ∈ {30%, 50%}. - means the optimization failure. Best in
bold and second with underline. These notes are the same as others. Please refer to
Sec. 4.3 for detailed explanations.

MNIST Fashion-MNIST Cifar-10
Υ = 30% Υ = 50% Υ = 30% Υ = 50% Υ = 30% Υ = 50%Methods

A R V A R V A R V A R V A R V A R V
with skew degree β = 0.5

FoolsGold 96.48 0.04 48.26 90.53 0.21 45.37 82.73 2.38 42.55 80.92 0.01 40.46 55.33 45.00 50.16 51.37 10.56 30.96
DnC 98.82 89.51 94.16 98.54 0.09 49.31 85.94 89.22 87.58 82.64 0.00 41.32 60.91 90.26 75.58 51.34 11.18 31.26

Sageflow 99.16 0.60 49.88 99.08 0.35 49.71 87.88 0.21 44.04 87.70 0.00 43.85 64.69 32.00 48.34 61.90 16.24 39.07
Trim Median 95.52 89.01 92.26 98.04 0.00 49.02 10.00 100.00 55.00 10.00 100.00 55.00 47.39 62.05 54.72 10.00 100.00 55.00

Bulyan 93.40 89.10 91.25 - - - - - - - - - 40.53 94.45 67.49 - - -
RFA 99.24 0.09 49.66 98.77 0.04 49.40 85.56 0.02 42.79 85.45 0.00 42.72 64.22 29.53 46.87 59.65 12.76 36.20
RSA 26.56 50.34 38.45 21.95 25.36 23.65 15.09 40.36 27.72 10.54 0.68 5.61 10.00 100.00 55.0 10.65 55.95 33.30
RLR 99.19 0.39 49.79 99.05 0.15 49.60 87.91 0.20 44.05 87.63 0.02 43.82 64.00 36.98 50.48 61.44 16.12 38.78

CRFL 98.72 31.55 65.13 98.46 2.40 50.43 84.60 4.01 44.30 84.67 0.02 42.34 59.39 47.78 53.58 56.16 23.00 39.58
FLTrust 93.70 18.40 56.05 93.27 0.01 46.64 67.15 0.40 33.77 69.55 0.33 34.94 55.71 90.88 73.29 49.57 47.15 48.36

Finetuning 98.76 1.17 49.96 98.64 0.09 49.36 87.33 2.37 44.85 86.60 0.46 43.52 63.91 40.05 51.98 61.27 32.78 47.02
SDFC 97.96 88.01 92.98 97.42 56.29 76.85 85.10 91.13 88.11 84.21 87.27 85.74 62.87 87.91 75.39 58.70 71.15 64.92

with skew degree β = 1.0

FoolsGold 83.88 9.17 46.52 97.12 0.09 48.60 82.23 13.12 47.67 69.47 2.67 36.07 61.95 39.27 50.61 59.04 18.46 38.75
DnC 99.21 89.61 94.41 98.77 0.00 49.38 87.77 90.04 88.90 84.91 0.03 42.47 62.72 90.85 76.78 57.50 16.23 36.86

Sageflow 99.24 0.51 49.87 99.31 0.04 49.67 89.13 2.52 45.82 88.36 0.15 44.25 66.26 34.18 50.22 61.88 14.70 38.29
Trim Median 98.12 89.62 93.87 11.35 100 55.67 84.69 1.77 43.23 10.00 100.00 55.00 57.51 57.24 57.37 10.00 100.00 55.00

Bulyan 98.47 89.56 94.01 87.88 83.88 85.88 80.96 74.35 77.65 - - - 55.05 89.84 72.44 - - -
RFA 99.43 0.00 49.71 99.26 0.01 49.63 88.35 1.33 44.84 87.87 0.05 43.96 66.91 30.71 48.81 62.15 13.68 37.91
RSA 32.51 96.10 64.30 33.12 51.01 42.06 25.68 54.29 39.98 41.31 58.80 50.05 10.00 100.00 55.00 11.46 95.76 53.61
RLR 99.31 0.17 49.74 99.34 0.06 49.70 88.94 1.69 45.31 87.89 0.02 43.95 67.77 30.42 49.09 62.93 15.56 39.24

CRFL 99.21 37.99 68.59 98.99 3.82 51.40 88.40 27.75 58.07 88.03 3.39 45.71 64.13 44.17 54.15 60.99 23.62 42.30
FLTrust 96.11 71.30 83.70 94.78 10.25 52.51 82.31 16.52 49.41 70.01 0.31 35.16 66.67 89.38 78.02 57.99 53.38 55.68

Finetuning 98.93 0.08 49.50 98.87 0.02 49.44 88.08 5.32 46.70 87.17 3.39 45.28 65.53 42.69 54.11 62.35 48.75 55.55
SDFC 98.85 89.65 94.25 98.46 88.29 93.37 87.96 90.08 89.02 86.80 88.91 87.85 64.66 84.32 74.48 59.15 60.44 59.79

Origin Ours FLtuning FLTrust CRFL RSA Bulyan Trim Median DnC

Fig. 6: Qualitative analysis under backdoor attack (Top Left) over MNIST (β =
0.5, Υ = 30%), where orange bound denotes corrected predictions. Refer to Sec. 4.3.

Fisher information to denote the parameter importance consistently yields sat-
isfactory results. This can be attributed to the reason that the absolute gradient
value fails to bring obviously value difference and thus could not clearly highlight
the parameter importance discrepancy.

Local Updating Rounds. Furthermore, we analyze the effect of local updating
rounds in Fig. 3. SDFC maintains a stable performance under different local
rounds, indicating that SDFC achieves fast convergence in limited epochs and
possesses the ability to resist client drift under various local rounds.

Client Scale K. We evaluate the performance with various participating client
scale K in Fig. 5. Our SDFC achieves the competitive heterogeneity and ro-
bustness trade-off performances, demonstrating that our method is capable of
dealing with the different client scale in the federated system.
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Fig. 7: Comparison of federated benign performance A and backdoor failure
rate R during communication on Cifar-10 with Υ = 30%. SDFC appears stable
convergence speed and satisfying performance. Please see details in Sec. 4.3.
4.3 Comparison to State-of-the-Arts

The Tab. 5 plots the final metric by the end of the federated learning process with
popular backdoor defense methods. It clearly depicts that our method achieves
the satisfying performance than different counterparts on different evaluation
metrics, which confirms that SDFC effectively enhances the backdoor-robust
in heterogeneous federated learning. Take the result of MNIST with β = 0.5
and Υ = 50% as an example, our method outperforms the best counterpart
with a gap of 27.14% on the V metric. Furthermore, existing backdoor defensive
methods appear fragile backdoor failure rate under either the large malicious
client ratio Υ = 50% and serious label skew β = 0.3. It reveals that existing
solutions fail to conduct the client-wise discrimination selection under large-
scale evils or serious data heterogeneity. We further plot both the federated
benign performance A and backdoor failure rate R during the communication
process on the Cifar-10 setting in Fig. 7. We observe that SDFC presents faster
and stabler convergence speed than others with different heterogeneity degrees.
We Grad-CAM algorithm [86] to visualize the network attention for each input.
SDFC prefer to extract key features from the image compared to other methods.

5 Conclusion

We present the Self-Driven Fisher Calibration (SDFC), the first work to achieve
backdoor-robust heterogeneous federated learning from the parameter-wise. We
argue that existing backdoor defensive solutions rely on either data homogeneity
or minor backdoor attackers assumptions to design elaborate client-wise selec-
tion. However, we claim that benign heterogeneity and malicious backdoor bring
the divergent optimization direction and instead expect to consider parameter
importance for the target distribution. Therefore, we utilize the Fisher Informa-
tion Matrix to measure the parameter important on local agnostic distribution
and global target distribution. We allocate high regularization and low aggre-
gation weight for those with large discrepancies in parameter importance. The
effectiveness and robustness have been validated against popular counterparts
with backdoor attacks under various heterogeneous federated scenarios. We hope
this work provides a novel perspective to pave the way for future related research.
Acknowledgment This work is supported by the National Key Research and
Development Program of China 2023YFC2705700, and National Natural Science
Foundation of China under Grant (62361166629, 62176188, 62225113, 623B2080)
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