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Abstract
Federated graph learning collaboratively learns
a global graph neural network with distributed
graphs, where the non-independent and identically
distributed property is one of the major challenge.
Most relative arts focus on traditional distributed
tasks like images and voices, incapable of the graph
structures. This paper firstly reveals that local client
distortion is brought by both node-level semantics
and graph-level structure. First, for node-level se-
mantic, we find that contrasting nodes from distinct
classes is beneficial to provide a well-performing
discrimination. We pull the local node towards the
global node of the same class and push them away
from the global node of different classes. Second,
we postulate that a well-structural graph neural net-
work possesses similarity for neighbors due to the
inherent adjacency relationships. However, align-
ing each node with adjacent nodes hinders discrim-
ination due to the potential class inconsistency. We
transform the adjacency relationships into the sim-
ilarity distribution and leverage the global model to
distill the relation knowledge into the local model,
which preserves the structural information and dis-
criminability of the local model. Empirical results
on three graph datasets manifest the superiority of
the proposed method over counterparts.

1 Introduction
Federated learning (FL ) has shown considerable potential
in collaborative machine learning across distributed devices
without disclosing privacy [Konečnỳ et al., 2016; Fang and
Ye, 2022]. Although FL has attracted wide research interest
and witnessed remarkable progress [McMahan et al., 2017a;
Zhan et al., 2020], most of them focus on the tasks like im-
ages and voices on the basis of CNN and transformer [He
et al., 2016; Vaswani et al., 2017]. However, many real-
world applications generate structured graphical data (e.g.,
knowledge graph, social network [Liu et al., 2021]), con-
sisting of vertices and edges [Panagopoulos et al., 2021;

†These authors contributed equally to this work.
*Corresponding authors.

Participant 1 Participant m

(b) Structure Bias

(a) Semantic Bias

Testing Graph

Figure 1: Problem illustration. We present the structure and se-
mantic level similarities among clients. The deeper color suggests a
more similar representation of node and graph across different par-
ticipants, while the shallower mean dissimilarity. (a) Semantic bias:
clients show the inconsistency predicted class of node. (b) Structure
bias: clients hold distinct similarities among neighborhood nodes.
In this work, we conduct semantics-level and structure-level calibra-
tion to achieve better federated graph learning performance.

Wang et al., 2021], while CNN and transformer can not deal
with them effectively due to the inability to capture the topo-
logical structure [Kipf and Welling, 2017; Zhu et al., 2020].
For these graph applications, graph neural networks (GNN )
have won praise for their impressive performance [Hamilton
et al., 2017; Shchur et al., 2018] because they utilize both
the independence of nodes and the unique structure of graphs
to mine graph data. Therefore, for the purpose of handling
the graph data across multiple participants with growing pri-
vacy concerns, Federated Graph Learning (FGL ) has become
a promising paradigm [Fu et al., 2022].

Notably, data heterogeneity has become an inescapable
problem in Federated Learning [Kairouz et al., 2019; Huang
et al., 2022a]. Specifically, the data distribution among dif-
ferent parties presents non-IID (identically and independently
distributed) property, which results in the divergence of lo-
cal direction [Huang et al., 2023; Huang et al., 2022b]. Al-



though existing methods have made efforts to restrain the lo-
cal model with respect to the global model, they mainly de-
sign for typical data heterogeneity without special consider-
ation for graph structural bias. However, previous work has
demonstrated the importance of exploiting structural knowl-
edge [Liu et al., 2023a; Liu et al., 2022b]. In this paper, we
preliminarily investigate the unique characteristics of graph
heterogeneity and find that there exists node semantic and
graph structural bias in FGL setting. In detail, we lever-
age the Centered Kernel Alignment (CKA ) [Kornblith et al.,
2019] to measure the similarity between node representations
given by different client model pairs. Especially, for structure
heterogeneity, we utilize the Anonymous Walk Embedding
(AWE ) to generate a representation for the graph and exploit
the Jensen-Shannon distance between pair of graphs to mea-
sure the discrepancy. We reveal that there exists severe diver-
gence on both node-level semantic and graph-level structure
among clients (Fig. 1). Therefore, a crucial problem for FGL
is that How to calibrate both node-level semantic and graph-
level structure bias in Federated Graph Learning?

For node-level semantic calibration, we argue that a well-
discriminative graph neural network contrasts nodes from dif-
ferent classes to provide a clear decisional boundary. Inspired
by the success of supervised contrastive learning [Khosla et
al., 2020; Liu et al., 2023b], we naturally expect to conduct
pull-push operations among different classes on local model
to acquire a well-performing decisional ability. However,
under federated learning, the local GNN model purely op-
timizes on private data and drifts towards a distinct local min-
imum, which means solely relying on the guidance signals
provided by the local model is confusing and unreliable. Prior
studies [Hu et al., 2022], attempt to reweight local model dur-
ing the FL aggregation process, but this sheds little light on
identity node semantics bias caused by data heterogeneity. In
this work, we investigate the node semantic knowledge and
calibrate it during the local training process. We propose
Federated Node Semantic Contrast (FNSC ), which encour-
ages the query local node representation to be close to global
node embeddings within same class and pushes it away from
global node embeddings of different classes.

Besides, for graph-level structural calibration, local clients
normally possess a graph that is incomplete and is biased to
depict the graph structure. Existing works normally focus on
reconstructing the graph structure to handle the local struc-
tural bias. For example, FedStar [Tan et al., 2023] decou-
ples the structure information and encodes it in a personal-
ized way, which brings extra model parameters for local up-
dating. In this work, without more communication cost, we
take a free ride to convert stiff graph structure reconstruction
into structural relationship maintenance via the given global
model during local training. We introduce Federated Graph
Structure Distillation (FGSD ). In detail, for each node, we
leverage the global model to calculate the similarity of each
node with its neighborhoods, based on the adjacency matrix.
Then, we require the local model to generate the adjacent
node similarity and mimic the global one, which leverages
the global model to provide beneficial structural knowledge.

In a nutshell, we propose a novel Federated Graph Seman-
tic and Structural Learning method (FGSSL ). Our contribu-

tions are summarized as follows:
• We are the first in FGL to decouple the data heterogene-

ity setting to node semantic level and graph structural level
bias respectively. From this perspective, we can ameliorate
final degraded performance by calibrating the local training
drift, which sheds good light on future research in solving
the non-IID problem in FGL scenarios.

• We introduce a novel federated graph learning (FGSSL )
frame for both node and graph-level calibration. The for-
mer Federated Node Semantic Contrast calibrates local
node semantics with the assistance of the global model
without compromising privacy. The latter Federated Graph
Structure Distillation transforms the adjacency relation-
ships from the global model to the local model, fully rein-
forcing the graph representation with aggregated relation.

• We conduct extensive experiments on benchmark datasets
to verify that FGSSL achieves superior performance over
related methods. Taking a free ride with the global model,
it does not introduce additional communication rounds and
shows stronger privacy since it does not require additional
shared sensitive prior information.

2 Related Work
2.1 Federated Graph Learning
Federated graph learning (FGL ) facilitates the distributed
training of graph neural networks (GNN ). Previous literature
on FGL can be categorized into two types: inter-graph and
intra-graph. Inter-graph FGL involves each participant pos-
sessing a set of graphs and collectively participating in feder-
ated learning (FL ) to improve the modeling of local data or
generate a generalizable model [Xie et al., 2021]. In contrast,
intra-graph FGL involves each participant owning only a sub-
set of the entire graph and the objective is to address miss-
ing links [Zhang et al., 2021] or discover communities [Baek
et al., 2022]. However, both of them are confronted with
the non-IID issue which degrades the collaboratively learned
model performance. Conventional methods solving the non-
IID in FL field (e.g., FedProx [Li et al., 2020] and MOON
[Li et al., 2021]) meet the absence of design for FGL scenar-
ios. Some preceding methods are dedicated to handling the
non-IID problem for FGL . FedGCN [Hu et al., 2022] tries to
reweight local model parameters via an attention mechanism.
FILT+ [Zhu et al., 2021a] pulls the local model closer to the
global model by minimizing the loss discrepancy between a
local model and the global model. However, they focus on
leveraging the issue from model respect and fail to effectively
exploit the unique characteristics of the graph data. In this pa-
per, we consider inter-graph FGL and deal with the non-IID
via exploiting the graphic characteristics and decoupling into
node-level semantic and graph-level structure calibration.

2.2 Contrastive Learning on Graphs
In recent years, contrastive learning has seen a resurgence
of interest in the field of visual representation learning [He
et al., 2020; Chen et al., 2020]. This success has spurred
a wealth of research exploring the adaptation of contrastive
learning to graph-like data for self-supervised methods [Zhu
et al., 2021b; Liu et al., 2022a]. Traditional unsupervised



methods on graph representation learning approaches [Grover
and Leskovec, 2016; Perozzi et al., 2014], adhere to a con-
trastive structure derived from the skip-gram model. The
graph autoencoder (GAE) [Kipf and Welling, 2016] is a self-
supervised learning technique that aims to reconstruct the
graph structure while The MVGRL [Hassani and Khasah-
madi, 2020] intends to do node diffusion and compare node
representation to augmented graph representation in order to
learn both node-level and graph-level representation. Sim-
ilar to SimCLR [Chen et al., 2020], GRACE [Zhu et al.,
2020] constructs two augmented views of a graph by ran-
domly perturbing nodes and edges, and subsequently learns
node representations by pushing apart representations of ev-
ery other node while bringing together representations of the
same node in the two different augmented graphs within the
same network. Apart from self-supervised tasks, SupCon
[Khosla et al., 2020] firstly extend the self-supervised batch
contrastive approach to the fully-supervised setting. In this
work, we examine the contrastive method in distributed sys-
tems and conduct a inter-view based contrast between the
global and local models respectively. Moreover, we consider
the supervised contrast that leveraging the label as a signal to
choose positive samples for calibrating the node embedding
to be more similar to the global node embedding.

2.3 Knowledge Distillation
Knowledge Distillation (KD ) [Hinton et al., 2015] is a tech-
nique that has been extensively studied and applied in var-
ious areas of machine learning, including image classifica-
tion, natural language processing, and graph representation
learning. The key aspect of KD is transferring knowledge
from a complex and powerful teacher model to a more lim-
ited student model. In many works, knowledge distillation
is typically used to train a smaller student network under the
guidance of a larger teacher network with minimal to no per-
formance degradation [Wang and Yoon, 2021]. In practice,
knowledge distillation forces the feature or logit output of
the student network to be similar to that of the teacher net-
work. Researchers have attempted to improve knowledge
distillation methods by introducing new techniques such as
model distillation [Mullapudi et al., 2019], feature distilla-
tion [Romero et al., 2015], and relation distillation [Park et
al., 2019]. In this work, we focus on ameliorating the het-
erogeneity of graph structure by adapting relation-based KD
techniques for the FGL domain. We first transform the ad-
jacency relationships into similarity distribution from global
view, then distill them into the local model. In this way,
we leverage aggregated contextual neighborhood information
from global view and calibrate the drift caused by graph struc-
ture from the locally biased data.

3 Methodology
3.1 Preliminaries
Graph Neural Newrok. Graph neural networks (GNN ),
e.g., graph convolutional networks (GCN ) [Kipf and Welling,
2017] and Graph Attention Networks (GAT ) ([Veličković
et al., 2017]), improved the state-of-the-art in informative

graph data with their elegant yet powerful designs. In gen-
eral, given the structure and feature information of a graph
G = (V,A,X), where V , A, X denote nodes, adjacency
matrix and node feature respectively, GNN targets to learn
the representations of graphs, such as the node embedding
hi ∈ Rd. A GNN typically involves two steps: the processes
of message propagation and neighborhood aggregation. In
this process, each node in the graph iteratively collects infor-
mation from its neighbors with its own information in order
to update and refine its representation. Generally, an L-layer
GNN can be formulated as

h
(l+1)
i = σ(h

(l)
i ,AGG({h(l)

j ; j ∈ Ai})),∀l ∈ [L], (1)

where h
(l)
i denotes the representation of node v at the lth

layer, and h
(0)
i = vi represents the node feature. Ai is defined

as the neighbors of node vi, AGG(·) is a aggregation func-
tion that can vary for different GNN variants, and σ means a
activation function.

After L message-passing layers, the final node embedding
hi is passed to a project head F to obtain logits:

zi = F (hi). (2)

In this paper, we examine proposed FGSSL in node-level
tasks (e.g., node classification), and F is defined as the clas-
sifier head. Specially, we utilize L-1 layers as GNN feature
extractor and the L layer as F .

Centralized Aggregation
In vanilla FL setting there is always a central server with M
clients, the m-th client owns a private dataset Dm and |D| is
the total size of samples over all clients. FedAvg [McMahan
et al., 2017b] is a foundational algorithm in the field of feder-
ated learning, which serves as a starting point for the design
of more advanced FL frameworks. It operates by aggregat-
ing the updated model parameters from individual clients and
redistributing average of these parameters back to all clients:

θ ←
M∑

m=1

|Dm|
|D|

θm. (3)

In this study, we utilize the Federated Learning (FL ) frame-
work to enable collaborative learning on isolated graphs
among multiple data owners, without the need to share raw
graph data. By doing so, we aim to obtain a global node clas-
sifier. Specifically, when model parameters are set to θ for the
Graph Neural Network (GNN ) encoder and classifier F , we
formalize the global objective:

argmin
1

M

M∑
m

Lm(θm;Dm). (4)

Normally, the loss function Lm in Eq. (5) is cross-entropy
loss as each node which is optimized with softmax operation:

LCE
i = −1ci log(softmax(zi)), (5)

where 1ci denotes the one-hot encoding of the label ci.



3.2 Motivation
Commonly, federated graph learning aims at training a shared
global GNN model, where clients have their own graphs and
do not expose private data. In real-world applications, het-
erogeneous data distribution exists among clients. Therefore,
clients present divergent optimization directions, which im-
pair the performance of the global GNN model. We also
show that this client divergence manifests in node-level se-
mantics and graph-level structure aspects. We leverage the
pairwise Centered Kernel Alignment (CKA ) [Kornblith et
al., 2019] and calculate the similarity between arbitrary GNN
models on the same input testing samples. CKA generates
the similarity score ranging from 0 (not at all similar) to 1
(identical). We select 20 clients and train the local GNN
model for 100 epochs, simultaneously taking the node out-
put from different models as node representation. As shown
in Fig. 1, considering both node semantics and graph struc-
ture calibration into account is beneficial to learning a better
shared GNN model.

3.3 Proposed Method
Federated Node Semantic Contrast. Generally, the goal of
node classification is to identify all samples. Thus, the GNN
module should maintain the discernible patterns. Inspired by
the success of supervised contrastive learning, we naturally
expect to contrast the node features of different classes. For
the local model, we pull the node feature vectors closer to
the positive samples from the same semantics and push them
far away from negativeness with distinct classes. Specifically,
for the node vi, its embedding hm

i generated by local GNN
encoder Gm(·) with its ground truth ci, the positive samples
are other nodes belonging to the same class ci, while the neg-
atives are the nodes from the different classes C\ci. Our su-
pervised, local node-wise contrastive loss is defined as:

LCON
i =

−1
|Pi|

∑
p∈Pi

log
φ(hm

i , hm
p , τ)

φ(hm
i , hm

p , τ) +
∑

k∈Ki
φ(hm

i , hm
k , τ)

,

(6)
where Pi and Ki denote the collections of the positive and
negative samples sets for the node vi. We define the τ as a
contrastive hyper-parameter and φ is formulated as:

φ(hi, hj , τ) = exp(
hi · hj

||hi|| ||hj ||
/τ). (7)

However, it is widely known that private models present drift
from the ideal global optima. Thus, naively leveraging the
private model to provide the positive and negative sets would
further skew the local optimization direction. In our work,
we argue that the shared global model aggregates knowledge
from multiple parties and presents less bias than the local
model. In this paper, we propose Federated Node Semantic
Contrast (FNSC ), which leverages the global model to pro-
vide positive and negative cluster representations for each lo-
cal node embedding. We further reformulate the aforemen-
tioned supervised node contrastive learning as follows:

LFNSC
i =

−1
|Pi|

∑
p∈Pi

log
φ(hm

i , hg
p, τ)

φ(hm
i , hg

p, τ) +
∑

k∈Ki
φ(hm

i , hg
k, τ)

,

(8)

where hg denotes the the node embedding generated by the
GNN encoder Gg(·) Moreover, given the node embedding
hm
i generated by local GNN encoder Gm(·), we pull the node

vi from local view and its pairwise one hg
i in global view

together, simultaneously pull it and nodes from global view
with the same class ci together.

Notably, the recent success of contrastive learning in im-
age or video processing is largely due to carefully designed
image augmentations [Ye et al., 2022; Ye et al., 2019]. These
augmentations allow the model to explore a wider range
of underlying semantic information and obtain better per-
formance. In this section, we adopt a similar strategy for
graph data by using an augmentation module, denoted by
Aug(·), to generate two different views of the graph. Prior
research has produced various methods for graph augmen-
tation, which can be divided into two categories: topology
(structure) transformation and feature transformation (e.g.,
Edge Removing and Feature Masking) [Zhu et al., 2021b;
Zhu et al., 2020]. In order to enforce local clients to acquire
a well-discriminative ability, we leverage both augmentations
in our augmentation modules. Furthermore, we propose an
asymmetric design for the contrast process, which utilizes
stronger augmentations for the local GNN and weaker aug-
mentations for the global GNN , given by G̃1 = Augs(G) for
strong Aug(·) and G̃2 = Augw(G) for weak Aug(·). This
would give local clients great strength to optimize towards
the global direction, meanwhile, the global model can provide
stable contextual semantic information to local training pro-
cess. We further demonstrate the effectiveness of this asym-
metric augmentation strategy in Tab. 3.
Federated Graph Structure Distillation. For graph-level
calibration, it is normally assumed that adjacent nodes will
share similar representations. However, under federated
learning, each client fails to effectively depict this rela-
tionship because local data is normally incomplete. The
straightforward solution is to directly align the query local
node feature with the neighborhood nodes from the global
model. However, it could potentially disrupt the discrim-
inability because neighboring nodes probably belong to dif-
ferent classes. Motivated by similarity knowledge distilla-
tion [Abbasi Koohpayegani et al., 2020; Fang et al., 2021;
Tejankar et al., 2021], we propose Federated Graph Structure
Distillation (FGSD ) to overcome semantic inconsistency of
adjacent nodes, which maintains graphic structure knowledge
via the support of the global model. We measure the similar-
ity of the query node with neighboring nodes from the global
model output and then optimize the local network to mimic
the similarity distribution from the global view. Specifically,
for the node vi, zi is the logit output given by the node clas-
sifier F , we denote the Ai as the neighborhood node set and
define the Sg(vi, Ai) as the similarity of the selected node
vector with adjacent nodes computed by the global model:

Sg(vi, Ai) = [Sg
1 , . . . , S

g
|Ai|

],

Sg
j =

exp
((
zgi · z

g
j
T )/ω)∑

j∈Ai
exp

((
zgi · z

g
j
T )

)
/ω

) , (9)

where ω is the distillation hyper-parameter, ( )T means trans-
pose operation. Then, we measure similarity distribution
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Figure 2: Architecture illustration of Federated Graph Semantic and Structural Learning (FGSSL ). The left yellow box corresponds to the
federated aggregation scheme (e.g. FedAvg), while the right grey box suggests the local training process. FGSSL includes two components:
(a) Federated Node Semantic Contrast and (b) Federated Graph Structure Distillation. Best viewed in color. Zoom in for details.

from the m local model, Sm(vi, Ai), which is formed by:

Sm(vi, Ai) = [Sm
1 , . . . , Sm

|Ai|],

Sm
j =

exp
((
zmi · zmj T

)
/ω

)∑
j∈Ai

exp
((
zmi · zmj T )

)
/ω

) . (10)

The FGSD (Federated Graph Structure Distillation) loss is
calculated as the following:

LFGSD
i = Sg(vi, Ai) log

Sg(vi, Ai)

Sm(vi, Ai)
. (11)

Finally, the overall objective to be maximized is then formal-
ized as the average across all nodes of the accumulation of
the losses discussed above and is defined by:

L =
1

N

N∑
i=1

(
LCE

i + λCLFNSC
i + λDLFGSD

i

)
. (12)

To sum up, Federated Graph Semantic and Structural Learn-
ing FGSSL leverage the global model to simultaneously cal-
ibrate local model from the node-level semantics and graph-
level structure, which effectively handles the heterogeneous
graph data and learns a well-performing global GNN model.
We further illustrate the FGSSL in the Algorithm 1.

4 Experiments
4.1 Experimental Setup
In this paper, we perform experiments on node-level tasks de-
fined on graph data: we choose node classification to confirm
the efficacy of FGSSL in various testing environments.
Datasets. For node classification, our experiments are con-
ducted on three benchmark datasets for the citation networks:
• Cora [McCallum et al., 2000] dataset consists of 2708

scientific publications classified into one of seven classes.
There are 5429 edges in the network of citations. 1433 dis-
tinct words make up the dictionary.

• Citeseer [Giles et al., 1998] dataset consists of 3312 scien-
tific publications classified into one of six classes and 4732
edges. The dictionary contains 3703 unique words.

• Pubmed [Sen et al., 2008] dataset consists of 19717 scien-
tific papers on diabetes that have been categorized into one
of three categories in the PubMed database. The citation
network has 44338 edges in it. A word vector from a dic-
tionary with 500 unique terms that is TF/IDF weighted is
used to describe each publication in the dataset.

Network Structure. Since the GAT [Veličković et al., 2017]
is a powerful and widely used benchmark network in graph
representing learning, we realize two layers GAT with pa-
rameter θ, decoupling it into feature extractor G(·) and uni-
fied classifier F (·). The hidden dimensions are 128 for all
datasets, and classifier F maps the embedding from 128 di-
mensions to 7,6,3 dimensions, which is the number of classi-
fication classes for Cora, Citeseer, and Pubmed respectively.
Graph Augmentation Strategy. Generating views is a key
component of contrastive learning methods. In the graph do-
main, different views of a graph provide different contexts for
each node. We follow augmentation mentioned in [Zhu et al.,
2021b], [Zhu et al., 2020] to construct a contrastive learning
scheme. In FGSSL , we leverage two methods for new graph
view generation, removing edges for topology and masking
features for node attributes.
• Removing edges (RE). It randomly removes a portion of

edges in the original graph.
• Masking node features (MF). It randomly masks a frac-

tion of dimensions with zeros in node features.
Implement Details. We utilize the community detection al-
gorithm: Louvain, to simulate the subgraph systems. To stim-
ulate the non-iid scene, this algorithm partitions the graph
into multiple clusters and then assigns them to clients with
unbalanced node numbers. To conduct the experiments uni-
formly and fairly, we split the nodes into train/valid/test sets,
where the ratio is 60% : 20% : 20% . As for all networks,
we use SGD [Robbins and Monro, 1951] as the selected op-
timizer with momentum 0.9 and weight decay 5e − 4. The
communication round is 200 and the local training epoch is
4 for all datasets. The metric used in our experiments is the
node classification accuracy on the testing nodes and we re-



Algorithm 1: The FGSSL Framework
Input: communication rounds T , local epochs E,

participant scale M , mth client private graph data
Gm(V,A,X;Y ), private model θm, temperature τ ,
distillation parameter ω, loss weight λC and λD ,
learning rate η

Output: The final global model θt
for t = 1, 2, ..., T do

Participant Side;
for m = 1, 2, ...,M in parallel do

send the global model θt to m-th client
θmt ← LocalUpdating(θt, m)

end
Server Side;
θt+1 ←

∑M
m=1

|Dm|
|D| θmt

end
return θt

LocalUpdating(θt, m):

Initialize Gg(·), F g(·)← θt

Initialize Gm(·), Fm(·)← θt

Freeze Gg(·), F g

for e = 1, 2, ..., E do
Z = θm(X)
LCE ← CE(Z, Y ) in Eq. (5)
G̃1, G̃2 ← Augs(G), Augw(G)
Hm, Hg ← Gm(G̃1), Gg(G̃2)
LFNSC ← (Hm, Hg) through Eq. (8)
Zm, Zg ← Fm(Hm), F g(Hg)
Sg(V,A)← (Zg) by Eq. (9)
Sm(V,A)← (Zm) by Eq. (10)
LFGSD ← (Sm(V,A), Sg(V,A)) through Eq. (12)
L = LCE + λCLFNSC + λDLFGSD

θm ← θm − η∇L
end
return θm

port the averaged accuracy and the standard deviation over
several random repetitions.
Counterparts. (1) Local each client train their model lo-
cally, (2) Global the server leverage the complete graph for
training. For rigorous evaluation, we compare our FGSSL
against popular federated strategies in FGL setting. (3) Fe-
dAvg (AISTATS’17 [McMahan et al., 2017b]), (4) FedProx
(MLSys’21 [Li et al., 2020]), (5) FedOpt (ICLR’21 [Reddi et
al., 2021]), (6) FedSage (NeurIPS’21 [Zhang et al., 2021]).

4.2 Experimental Results
Performance Comparison. The results of federated node
classification for various methods under three non-IID set-
tings are presented in Tab. 1. These results indicate that
FGSSL outperforms all other baselines and demonstrates a
significant and consistent improvement compared to the con-
ventional FedAvg algorithm in the FGL setting. Addition-
ally, personalized FL algorithms such as FedProx and Fe-
dOpt demonstrate better performance than vanilla aggrega-
tion by utilizing a universal solution to the non-IID problem.
Specialized methods in the FGL field such as FedSage also
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Figure 3: Visualization of training curves of the average test accu-
racy with Communication Epochs 200 with Citeseer dataset. Please
see Sec. 4.2 for details.
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Figure 4: Analysis on hyper-parameter in FGSSL . Node classifi-
cation results on three datasets under different τ and ω values with
M = 5, in which green represents Cora, yellow represents Pubmend,
and blue represents Citeseer. Refer to Sec. 4.3 for details.

perform better than common baselines, which is achieved
through the simultaneous training of generative models for
predicting missing links.
Convergence Analysis. Fig. 3 shows curves of the average
test accuracy during the training process across five random
runs conducted on the Citeseer datasets. It can be observed
that FGSSL dominates the other methods in non-IID setting
on the average test accuracy and achieves a stable conver-
gence.

4.3 Ablation Study
Effects of Key Components Mechanism. To better under-
stand the impact of specific design components on the overall
performance of FGSSL , we conducted an ablation study in
which we varied these components. For the variant without
FNSC and FGSD , we utilize the vanilla FGL setting with
2-layer GAT . As shown in Tab. 2, by exploiting both com-
ponents, the best performance is achieved in all three graph
datasets. It also suggests that FNSC plays a more crucial role
than FGSD , which means the calibration in node semantics
is stronger than the calibration in graph structure, and fea-
ture heterogeneity is more serious than graph heterogeneity in
non-IID setting. Moreover, the contribution made by FGSD
is still not negligible and can benefit the learning process.
Hyper-parameter study. We compare the downstream
task performance under different τ and ω values with five
clients. Results are shown in Tab. 1, where Fig. 4(a) shows
results when ω is fixed at 5, and Fig. 4(b) shows results under
τ = 0.1. It indicates that choosing τ can affect the strength of



Cora Citeseer Pubmed
Methods

M=5 M=7 M=10 M=5 M=7 M=10 M=5 M=7 M=10

Global 87.78±1.34 76.91±1.02 88.38±0.33
Local 61.54±0.83 45.32±1.52 32.42±2.81 73.85±1.20 62.87±2.45 48.91±2.34 83.81±0.69 72.34±0.79 59.19±1.31

FedAvg 86.63±0.35 86.21±0.21 86.01±0.17 76.37±0.43 76.57±0.46 75.92±0.21 85.29±0.83 84.27±0.29 84.57±0.29
FedProx 86.60±0.59 86.27±0.12 86.22±0.25 77.15±0.45 77.28±0.78 76.87±0.80 85.21±0.24 84.01±0.59 84.98±0.65
FedOpt 86.11±0.24 85.89±0.43 85.20±0.93 76.96±0.34 76.82±0.04 76.71±0.19 84.39±0.42 84.10±0.19 83.91±0.20

FedSage 86.86±0.15 86.59±0.23 86.32±0.37 77.91±0.59 77.82±0.13 77.30±0.71 87.75±0.23 87.51±0.20 87.49±0.09

FGSSL
88.34±0.34

↑ 1.71
88.56±0.43

↑ 2.35
88.01±0.26

↑ 2.00
80.43±0.23

↑ 4.06
80.21±0.11

↑ 3.64
80.01±0.09

↑ 4.09
88.25±0.60

↑ 2.96
87.75±0.41

↑ 3.48
87.60±0.53

↑ 2.73

Table 1: Comparison with the state-of-the-art methods on Cora, Citeseer and Pubmed datasets. The best result is bolded. ↑ means
improved accuracy compared with FedAvg. ± presents the standard deviation. Please see details in Sec. 4.2.

Cora Citeseer
FNSC FGSD

M=5M=7M=10M=5M=7M=10

✗ ✗ 86.63 86.21 86.01 76.37 76.57 75.92
✗ ✓ 86.86 86.32 86.51 77.91 77.53 76.42
✓ ✗ 88.01 88.23 87.84 79.89 79.43 79.12
✓ ✓ 88.34 88.56 88.01 80.43 80.21 80.01

Table 2: Ablation study of key components of our method in Cora
and Citeseer datasets with clients 5/7/10. See Sec. 4.3 for details.

Cora Citeseer
Local Global

M=5M=7M=10M=5M=7M=10

weak weak 87.24 87.10 86.99 77.72 77.45 77.30
weak strong 86.86 86.68 86.48 77.22 77.09 76.33
strong strong 87.91 87.93 87.52 79.59 79.12 78.81
strong weak 88.01 88.23 87.84 79.89 79.43 79.12

Table 3: Analysis on augmentation strategies : Effect of using
weak or strong augmentations for two datasets trained on the sole
FNSC component with 200 epochs. See Sec. 4.3 for details.

the contrastive method, where a smaller temperature benefits
training more than higher ones, but extremely low tempera-
tures (0.01) are harder to train due to numerical instability.
Across different datasets, the optimal τ is constantly around
0.1. For choosing an appropriate τ in (Eq. (9) and Eq. (10).),
we find that the performance is not influenced much unless ω
is set to extreme values like 0.1.
Discussion on Augmentation Strategies. As demonstrated
in Tab. 3, different augmentation strategies were implemented
within the augmentation module of proposed method. The
experimental results indicate that utilizing two levels of aug-
mentation improves performance. Specifically, on the one
hand, using double-weak augmentation strategies did not re-
sult in a significant improvement when compared to base-
line methods. On the other hand, double-strong augmentation
strategies led to improved results as they allowed for explo-
ration of rich semantic information through the supervised
contrastive method. Additionally, the combination of strong
and weak augmentation strategies at local and global levels,
respectively, resulted in the highest overall performance, in
accordance with our descriptions of them in Sec. 3.3.

(a) FedAvg (b) FedSage (c) FGSSL

Figure 5: Visualization of classification result. The figure number
corresponds to the method on the Citeseer dataset with m = 5.
Logits are colored based on class labels.

5 Conclusion

In this paper, we propose a novel federated graph learning
framework, namely FGSSL , that mitigates the non-IID is-
sues via appropriately calibrating the heterogeneity both on
the node-level semantic and graph-level structure. We de-
velop two key components to solve the problems respectively.
On the one hand, we leverage the contrastive-based method to
correct the drift node semantics from the global ones that have
Identical semantic information and achieve a high level of se-
mantic discrimination at node level. On the other hand, we
consider transforming adjacency relationships into a similar-
ity distribution and utilizing a global model to distill this in-
formation into the local model, which maintains the structural
information and corrects the structure heterogeneity. Experi-
mental results illustrate that FGSSL consistently outperforms
the state-of-the-art methods in federated graph scenarios.
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