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Abstract
Graph Neural Networks (GNNs) are widely employed to derive
meaningful node representations from graphs. Despite their suc-
cess, deep GNNs frequently grapple with the oversmoothing is-
sue, where node representations become highly indistinguishable
due to repeated aggregations. In this work, we consider the over-
smoothing issue from two aspects of the node embedding space:
dimension and instance. Specifically, while existing methods pri-
marily concentrate on instance-level node relations to mitigate over-
smoothing, we propose to mitigate oversmoothing at dimension
level. We reveal the heightened information redundancy between
dimensions which diminishes information diversity and impairs
node differentiation in GNNs. Motivated by this insight, we propose
Dimension-Level Decoupling (DLD) to reduce dimensional informa-
tion redundancy, enhancing dimensional-level node differentiation.
Besides, at the instance level, the neglect of class differences leads
to vague classification boundaries. Hence, we introduce Instance-
Level Class-Difference Decoupling (ICDD) that repels inter-class
nodes and attracts intra-class nodes, improving the instance-level
node discrimination with clear classification boundaries. Addition-
ally, we introduce a novel evaluation metric that considers the
impact of class differences on node distances, facilitating precise
oversmoothing measurement. Extensive experiments demonstrate
the effectiveness of our method Dual-Dimensional Class-Difference
Decoupling (DDCD) across diverse scenarios. Codes are available
at https://github.com/shentt67/DDCD.

CCS Concepts
•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies → Regularization.
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(a) Well-differentiated nodes with shallow GNN layers.
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(b) Indistinguishable nodes with multiple aggregations.

Figure 1: Illustration of Oversmoothing. (a) With shallow
GNN layers, the node representations are well-differentiated.
(b) The repeated information aggregations in deep GNNs
lead to highly indistinguishable node representations. This
phenomenon is widely recognized as oversmoothing issue.

1 Introduction
Graph data encodes information on both individual entities and
the relationships between those entities, finding wide applications
in practical scenarios such as social recommendation [14, 49, 81],
node classification [26, 29, 32, 59], biology design [45, 51], and
so on [43, 48, 58, 60, 68, 71]. To extract meaningful information
from graph data, Graph Neural Networks (GNNs) [12, 32, 57, 61,
65, 82] are widely adopted and have shown promising results in
generating effective node representations. Inspired by the success of
deepening Convolutional Neural Network (CNN) layers [21, 33, 54,
55], recent works have attempted to improve GNN performance by
increasing network depth to mine the multi-hop relation of graph
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data. However, deeper GNN layers often suffer from performance
degradation, which has been the subject of extensive discussions in
recent years. Li et al. [38] first revealed that repeated information
aggregations in deep GNNs lead to highly indistinguishable node
representations and hampers performance. This phenomenon is
widely recognized as oversmoothing issue [2, 30, 38, 46, 66].

Numerous efforts have beenmade to alleviate oversmoothing [27,
35, 50, 78, 79]. Several works tackle oversmoothing by modifying
the model architecture. Li et al. [35, 36] proposed to apply resid-
ual/dense connections and achieve better performance with deeper
GNNs. Chen et al. [44] proposed to utilize identity mapping to im-
prove GNN capabilities. Zhou et al. [80] investigated oversmoothing
by the Dirichlet energy and developed a generalized principle to
train deep GNNs. However, the designs on model architecture are
inflexible and introduce additional network parameters, limiting
their applications. Besides, several works attempt to address over-
smoothing from the graph structure and node embeddings, which
can be appropriately applied to existing deep GNNs: Dropout-based
methods [15, 42, 50] randomly drop node features or graph edges to
avoid redundant aggregation but can inadvertently disrupt the node
and structural information of the graph, losing original graph in-
formation; Normalization-based methods [27, 78, 79] address over-
smoothing by normalizing node representations after each layer
to preserve node distinctiveness, are versatile and can be readily
applied to various GNN models. However, they mainly focus on
instance-level cues and the dimension-level relations for enhancing
node differentiation remain unexplored.

Beyond the aforementioned limitations, we consider the over-
smoothing issue from two perspectives of the node embedding
space: dimension and instance. In self-supervised learning, dimen-
sional relations have been demonstrated to improve the represen-
tation capacity of the embedding space [1, 37, 39, 75]. Likewise,
we assume that dimensional relations can also enhance the node
representation in GNNs. We empirically uncovered that the pro-
nounced information redundancy between dimensions hinders the
capability of embeddings and impacts the node differentiation abil-
ity in GNNs (detailed in Section 3.3). Drawing inspiration from
these insights, we propose to enhance node differentiation at the
dimension level by reducing the information redundancy between
dimensions of node embeddings in deep GNNs. To achieve this, we
introduce the Dimension-Level Decoupling (DLD) that minimizes
the covariance between dimensions in each GNN layer. It reduces
the redundant information within node embedding dimensions,
which effectively promotes diversity dimension information and
enhances the differentiation ability of node embeddings.

Besides, existing instance-level methods normalize node repre-
sentations without taking class differences into account, resulting
in vague classification boundaries and performance degradation.
For instance, Zhou et al. [79] introduced Differentiable Group Nor-
malization (DGN) that assigns group probabilities and normalizes
node representations based on group relations. However, nodes
from different classes can be grouped together, leading to fuzzy
class boundaries. To utilize class differences for explicit classifica-
tion boundaries, we introduce the Instance-Level Class-Difference
Decoupling (ICDD) to alleviate the oversmoothing issue, which
can be applied to various GNN architectures. The basic idea is to
repel the inter-class nodes and attract intra-class nodes after each

GNN layer, dynamically encouraging inter-class nodes to separate
while maintaining similarity among intra-class node features. By
decoupling node representations based on class differences, this
strategy substantially enhances instance-level differentiation with
explicit classification boundaries.

Additionally, existing metrics [6, 23] assess oversmoothing based
on the distances between node pairs. However, the pair-wise dis-
tances are associated with class information: nodes in different
classes should exhibit distinct pair-wise distances while having
closer pair-wise distances in the same class. Without considering
class differences, the pair-wise distances are affected by class in-
formation and fail to accurately assess oversmoothing. In this case,
we introduce a new metric: Relative Inter-Class Distance (RICD),
which calculates the similarity difference between inter-class nodes
and intra-class nodes. It focuses on the relative difference between
inter-class nodes and intra-class nodes, accounting for the influence
of class information on the accurate assessment of oversmoothing.
In summary, our primary contributions can be outlined as follows:
• We propose a dual-dimensional decoupling method for allevi-
ating oversmoothing, which can be readily applied to various
deep GNNs. Firstly, at the dimension level, we propose to reduce
dimension redundancy by minimizing dimension covariances, di-
versifying the dimension information and ultimately promoting
well-differentiated nodes for mitigating oversmoothing.

• We propose incorporating class differences at the instance level to
alleviate oversmoothing with explicit class boundaries. It dynam-
ically encourages inter-class nodes to separate while maintaining
similarity among intra-class node representations, significantly
enhancing instance-level differentiation.

• We propose a novel metric to measure oversmoothing. It quan-
tifies the similarity difference between inter-class nodes and
intra-class nodes, considering the impact of class differences and
accurately measuring the extent of oversmoothing.

• We empirically demonstrate our proposed method DDCD (Dual-
Dimensional Class-Difference Decoupling), can effectively miti-
gate oversmoothing by combining dimension and instance level
cues, achieving state-of-the-art compared to existing methods.

2 Related Work
2.1 Graph Neural Network
Graph Neural Networks (GNNs) [13, 17, 52, 76] are proposed to gen-
erate meaningful node representations by propagation and transfor-
mation over multiple network layers. They can be broadly catego-
rized into spectral-based [3, 12, 22, 32] and spatial-based [16, 19, 57]
models. Spectral methods perform convolution operations in the
graph domain using spectral filters [3] and their simplified vari-
ants. In spatial GNNs, convolution operations are carried out by
propagating and aggregating local information along the edges of
a graph. Different aggregation functions are employed in spatial
GNNs to learn node representations, including mean/max pooling
[19], self-attention [57], and summation [64].

2.2 Oversmoothing
Oversmoothing [2, 30, 38, 46, 66] is first defined by Li et al. [38],
where the node representations become highly indistinguishable
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Figure 2: Framework of Dual-Dimensional Class-Difference Decoupling (DDCD). To enhance the dimension-level discriminabil-
ity of nodes, (a): Dimension-Level Decoupling (DLD in Section 3.3) urges diverse dimensions by minimizing the information
redundancy between dimensions, bringing well-differentiated representations; To alleviate oversmoothing with clear class
boundaries, (b): Instance-Level Class-Difference Decoupling (ICDD in Section 3.4) utilizes class differences by repelling nodes
from different classes and attracting nodes from the same classes, which promotes distinguishable node representation in
instance-level. As such, the output graph G = (H,A) has distinguishable node representations H. Best viewed in color.

in deep GNNs. Li et al. [38] attributed this issue to the multiple
Laplacian smoothing steps and suggested that oversmoothing was
a common phenomenon in GNNs as the Laplace operator is a
ubiquitous component, hindering the superposition of GNN lay-
ers. Recent research [2, 30, 62, 67] has explored oversmoothing
in-depth, emphasizing its significance in developing deep GNNs
to enhance node representations [7, 11, 77, 80]. Several works al-
leviate oversmoothing from the perspective of model architecture
designs [18, 34, 35, 44, 80]. However, the designs on model archi-
tecture are inflexible and introduce additional network parameters,
hindering their applications. Some approaches involve dropping
nodes or edges to avoid redundant aggregations [15, 42, 50], but
inadvertently disrupting the node and structural information of
the graph, leading to the loss of original graph information and
performance degradation. Other methods address oversmoothing
through layer-wise normalization [27, 78, 79], but the ignorance of
class differences results in vague class boundaries and ultimately
hinders performance. In this work, we present a flexible regulariza-
tion method addressing oversmoothing with class differences.

2.3 Dimensional Information Redundancy
Dimensional Information Redundancy [41, 74] indicates a high de-
gree of redundant information encoded across these dimensions.
It restricts the diversity of dimension information, thereby imped-
ing the representation capability of feature embeddings. This phe-
nomenon is prevalent and has been extensively investigated in
self-supervised learning [1, 25, 28, 37, 39, 75]. In this work, we
first propose to alleviate oversmoothing at the dimension level.
We reveal the heightened dimension information redundancy in
GNNs, which inspires us to enhance dimension diversity for node
differentiation by reducing the redundancy between dimensions.

2.4 Contrastive Learning
Contrastive Learning is widely applied [5, 70, 72], which maximizes
the agreement between positive samples while minimizing the
agreement between negative samples. It utilizes augmentations to
construct contrastive samples and is often applied in self-supervised
learning for label-scarce scenes [4, 9, 20, 63, 73] or for pre-training
networks [8, 10, 31, 47, 56, 70] to boost downstream tasks. In this
work, we utilize class differences to construct contrastive samples,
suppressing oversmoothing with clear class boundaries.

3 Methodology
3.1 Prelimilaries
We adopted the semi-supervised node classification (SSNC) setting
proposed by Kipf and Welling [32] for our experiments. Specifi-
cally, in an undirected graph G = (V, E,X), each node 𝑣𝑖 inV is
associated with a feature vector 𝑥𝑖 ∈ R𝑑 , where X = [𝑥1, ..., 𝑥𝑛]
represents the initial feature matrix. E ⊆ V ×V denotes the edge
set between nodes. The subsetV𝑠 ⊆ V of nodes are labeled with
𝑦𝑖 ∈ {0, ..., 𝑐 − 1} for 𝑣𝑖 ∈ V𝑠 , where 𝑐 is the number of classes. The
adjacency matrix A ∈ {0, 1}𝑁×𝑁 encodes the relations between
nodes, where A𝑖 𝑗 = 1 indicates edge connections between node 𝑣𝑖
and 𝑣 𝑗 , otherwise A𝑖 𝑗 = 0.

The task of SSNC is to predict the label of 𝑥𝑖 ∉ V𝑠 using the
labeled nodes and graph structure. In GNNs, multiple network
layers are utilized for propagation and transformation, with a linear
layer for predicting the labels of nodes. Denoting the transformation
and propagation as F ,P, the forward process of multi-layer GNNs
can be formulated as:

H(𝑙 ) = F (P(H(𝑙−1) ,A)). (1)
The number of GNN layers is 𝑛, and H(𝑙 ) represents the output of
𝑙-th GNN layer where 𝑙 ∈ {1, ...𝑛}.
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3.2 Relative Inter-Class Distance
When deepening GNNs by repeatedly aggregating neighbor node
representations, the node representations tend to become highly
indistinguishable, i.e., the oversmoothing issue. A robust evaluation
mechanism is critical for investigating this issue. Existing works [6,
23] measure the degree of oversmoothing based on the distance
between node pairs. However, the pair-wise distances are closely
associated with graph information (e.g., the class labels). For the
node classification task, nodes in different classes should exhibit
distinct pair-wise distances, while nodes in the same class should
have closer pair-wise distances. Without the consideration of class
information, the pair-wise distances are affected by class labels and
fail to accurately assess oversmoothing. In this case, we propose
a new metric: Relative Inter-Class Distance, which considers the
impacts of class differences to accurately measure oversmoothing.

Relative Inter-Class Distance (RICD). Denote the class set
in the graph is M. For class 𝑎 ∈ M, the node set is denoted by N𝑎 ,
and the node feature vector in N𝑎 is denoted as 𝑛𝑎 . Denote | · | is
the set cardinality. The cosine similarity of node feature vectors
𝑛𝑎 and 𝑛𝑏 is 𝑐𝑜𝑠 (𝑛𝑎, 𝑛𝑏 ). Firstly, we calculate the mean inter-class
similarity as 𝑆𝑃 :

𝑆𝑃 =
2

|M| (|M| − 1)

𝑎≠𝑏∑︁
𝑎,𝑏∈M

1
|N𝑎 | |N𝑏 |

𝑛𝑏 ∈N𝑏∑︁
𝑛𝑎∈N𝑎

𝑐𝑜𝑠 (𝑛𝑎, 𝑛𝑏 ) . (2)

The mean intra-class similarity is formulated by:

𝑆𝑄 =
1

|M|
∑︁
𝑐∈M

1
|N𝑐 | ( |N𝑐 | − 1)

𝑤≠𝑧∑︁
𝑛𝑤 ,𝑛𝑧 ∈N𝑐

𝑐𝑜𝑠 (𝑛𝑤 , 𝑛𝑧) . (3)

The formulation of RICD (𝐷𝐶 ) is as follows:

𝐷𝐶 = 𝑆𝑄 − 𝑆𝑃 . (4)

The high value of 𝐷𝐶 means differentiated nodes and a low de-
gree of oversmoothing. The proposed metric takes class differences
into consideration, focusing on the relative discrepancy of inter-
class nodes compared to intra-class ones, accurately measuring the
degree of oversmoothing.

3.3 Dimension-Level Decoupling
In the following two sections, we elaborate on the proposed frame-
work: Dual-Dimensional Class-Difference Decoupling (DDCD). It
is divided into two components: (1) Dimension-Level Decoupling
(DLD in Section 3.3) minimizes covariances between dimensions,
reducing the dimensional information redundancy to enhance node
differentiation and alleviate oversmoothing. (2) Instance-Level Class-
Difference Decoupling (ICDD in Section 3.4), which adaptively at-
tracts or repels intra/inter-class nodes, alleviating oversmoothing
while establishing clear class boundaries.

Motivation. Existingmethods primarily concentrate on instance-
level cues related to node relations for mitigating oversmoothing.
In the context of self-supervised learning, the dimensional rela-
tions have been proven significant in enhancing the representation
capacity of the embedding space in prior works [25, 28, 75]. Like-
wise, we posit that dimensional relations can also enhance the node
representation in GNNs to alleviate oversmoothing. Furthermore,
in deep GNNs, we observe that the multiple GNN layers lead to a
substantially increased information redundancy at the dimensional
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Figure 3: The Dimensional Information Redundancy on Cora
dataset. The results show the escalated dimensional informa-
tion redundancy with multiple GNN layers, which hinders
node differentiation and leads to oversmoothing.

level, resulting in limited node differentiation and aggravated over-
smoothing. Specifically, denote C as the covariance matrix, which
indicates the dimension redundancy of the embedding z:

C𝑖 𝑗 =
(z𝑖 − z𝑖 ) (z𝑗 − z𝑗 )√︁
(z𝑖 − z𝑖 )2

√︃
(z𝑗 − z𝑗 )2

, (5)

where 𝑖 and 𝑗 index the dimensions of z, and z𝑖 represents the mean
of z𝑖 . As depicted in Figure 3, we compute the mean redundancy
across all dimensions of final embeddings. It tends to increase with
deeper GNN layers, suggesting a high degree of dimension redun-
dancy. It implies that less information is encoded within the learned
dimensions, consequently limiting the representation capacity of
node embeddings and the differentiating ability of nodes.

The aforementioned insightsmotivate us to alleviate oversmooth-
ing in deep GNNs by reducing the dimensional information redun-
dancy, thereby boosting the diversity dimension information and
enhancing the node differentiation ability. To extenuate dimen-
sional information redundancy for well-differentiated nodes, we
introduce a layer-wise decoupling module, DLD (Dimension-Level
Decoupling). Concretely, in a 𝐾-layer GNN, assume H(𝑙 ) , 𝑙 ∈ 𝐾 is
the 𝑙-th layer output, H(𝑙 )

𝑖
represents the i-th row of H(𝑙 ) . We stan-

dardize the covariance matrix of the node representation matrix
H(𝑙 ) and the objective of DLD is defined as follows:

ℓ𝐷𝑖𝑚 (H(𝑙 ) ) =
∑︁
𝑖

∑︁
𝑗≠𝑖

C(𝑙 )
𝑖 𝑗

2
, (6)

where 𝑖, 𝑗 indexes dimensions of node embedding. C(𝑙 ) is the auto-
covariance matrix of H(𝑙 ) , which is formulated as:

C(𝑙 )
𝑖 𝑗

=
(H(𝑙 )

:,𝑖 − H
(𝑙 )
:,𝑖 ) (H

(𝑙 )
:, 𝑗 − H

(𝑙 )
:, 𝑗 )𝑇√︃

(H(𝑙 )
:,𝑖 − H

(𝑙 )
:,𝑖 )2

√︂
(H(𝑙 )

:, 𝑗 − H
(𝑙 )
:, 𝑗 )2

, (7)

H
(𝑙 )
:,𝑖 represents themean value ofH(𝑙 )

:,𝑖 . To obtainwell-differentiated
final embeddings, we apply ℓ𝐷𝑖𝑚 in each layer, and the loss function
L𝐷𝑖𝑚 can be defined as follows:

L𝐷𝑖𝑚 =

𝐾∑︁
𝑙=1

ℓ𝐷𝑖𝑚 (H(𝑙 ) ) . (8)
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Minimizing L𝐷𝑖𝑚 encourages the dimensions independent in each
layer, diversifying the dimension information, and ultimately im-
proving the node differentiation for alleviating oversmoothing.

3.4 Instance-Level Class-Difference Decoupling
Motivation. At the instance level, existing methods alleviate over-
smoothing without taking class differences into account, which
results in vague classification boundaries. For example, Zhou et
al. [79] introduced Differentiable Group Normalization (DGN), a
normalization method that assigns group probabilities using a
learnable linear layer and normalizes node representations based
on group relations. However, nodes from different classes can be
grouped together, leading to fuzzy class boundaries and degraded
performance. To effectively leverage class differences and establish
distinct classification boundaries for alleviating oversmoothing, an
ideal approach should encourage inter-class nodes to diverge while
preserving the similarity of intra-class nodes. Through instance-
level decoupling that incorporates class differences, it significantly
alleviates the oversmoothing with explicit classification boundaries,
enhancing robust node representations.

Inspired by the above discussions, we propose a supervised con-
trastive learning method Instance-Level Class-Difference Decou-
pling (ICDD). It leverages class differences to enhance the discrimi-
native capability of nodes at the instance level. The fundamental
concept is to minimize the similarity between node representa-
tions from different classes while simultaneously preserving the
similarity between node representations from the same class. Con-
sequently, the output representations within each layer can be
distinctly separated by class, effectively mitigating oversmoothing
at the instance level. DenoteN as all node row indexes of the train-
ing set, and S𝑖 ⊆ N , 𝑖 ∈ N represents node indexes with the same
class of i. Denote D𝑖 = N − {𝑖}, for loss function ℓ𝐼𝑛𝑠,𝑖 of a single
node 𝑖 in H(𝑙 ) , we have:

ℓ𝐼𝑛𝑠,𝑖 =
−1
|S𝑖 |

𝑝≠𝑖∑︁
𝑝∈S𝑖

log
exp(H(𝑙 )

𝑖
· H(𝑙 )

𝑝 /𝜏)∑
𝑞∈D𝑖

exp(H(𝑙 )
𝑖

· H(𝑙 )
𝑞 /𝜏)

. (9)

For nodes in the training set, the formulation is as follows:

ℓ𝐼𝑛𝑠 (H(𝑙 ) ) = 1
|N |

∑︁
𝑖∈N

ℓ𝐼𝑛𝑠,𝑖 . (10)

Applying ℓ𝐼𝑛𝑠 in each GNN layer, L𝐼𝑛𝑠 is as follows:

L𝐼𝑛𝑠 =
𝐾∑︁
𝑙=1

ℓ𝐼𝑛𝑠 (H(𝑙 ) ). (11)

Minimizing L𝐼𝑛𝑠 prompts the representations of each layer to be
discriminative while maintaining the similarity of nodes from the
same class, therebymitigating the oversmoothing issuewith explicit
classification boundaries.

3.5 Overall Objective Function
The dimensional decoupling loss in Equation (8) diversifies dimen-
sion information and enhances the dimension-level node differen-
tiation, while the instance-level decoupling loss in Equation (11)
promotes well-differentiated nodes with explicit class boundaries.
Besides, the typical classification loss is utilized to provide super-
vision for the classification task. Denote L0 as the classification

Dataset Nodes Edges Features Classes
Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3

CoauthorCS 18333 81894 6805 15
ogbn-arxiv 169343 1166243 128 40

Table 1: Dataset Statistics.

loss, and ℓ𝑐𝑒 (𝑣𝑖 , 𝑦𝑖 ) as calculating the cross-entropy loss with the
representation of node 𝑣𝑖 and its class labels 𝑦𝑖 . The classification
loss can be formulated as follows:

L0 =
1

|V𝑠 |
∑︁
𝑣𝑖 ∈V𝑠

ℓ𝑐𝑒 (𝑣𝑖 , 𝑦𝑖 ) . (12)

Combine with Equation (8), Equation (11), Equation (12), the overall
objective function can be stated as (where 𝛼 > 0 is a coefficient
that balances the trade-off of dimension decoupling):

L = 𝛼L𝐷𝑖𝑚 + L𝐼𝑛𝑠 + L0

= 𝛼

𝐾∑︁
𝑙=1

ℓ𝐷𝑖𝑚 (H(𝑙 ) ) +
𝐾∑︁
𝑙=1

ℓ𝐼𝑛𝑠 (H(𝑙 ) ) + 1
|V𝑠 |

∑︁
𝑣𝑖 ∈V𝑠

ℓ𝑐𝑒 (𝑣𝑖 , 𝑦𝑖 ).
(13)

Compared to existing methods that primarily focus on instance-
level relations, we reveal the intensified dimension redundancy
in deep GNNs and introduce a novel approach to eliminate the
redundancy for enhancing node differentiation. Additionally, we
propose utilizing class differences in the instance-level decoupling,
alleviating oversmoothing with explicit classification boundaries.
The dual-dimensional decoupling strategies complement each other
and further enhance the overall performance.

4 Experiment
Datasets.We conducted experiments on five well-known bench-
marks: Cora, Citeseer, Pubmed [69], CoauthorCS [53] and ogbn-
arxiv [24]. For the experiments on Cora/Citeseer/Pubmed, we fol-
lowed the semi-supervised setting proposed by Kipf et al. [32], with
20 nodes per class for training. For CoauthorCS, we adopted the
same setting in [79], using 40 nodes per class for training, 150 nodes
per class for validation, and the remaining for testing. Besides, we
also conduct experiments on large-scale datasets such as ogbn-arxiv
[24], to demonstrate the effectiveness of DDCD to data scalability.
The detailed statistics of datasets can be found in Table 1.

Baselines.We conducted experiments on three GNN backbones:
GCN [32], GAT [57], and ChebyNet [12]. We compared three reg-
ularization baseline methods: BatchNorm (BN) [27], PairNorm
(PN) [78], DGN [79], as well as three dropout methods: DropE-
dge (DE) [50], SkipNode (SN) [42], DropMessage (DM) [15]. To
prove the effectiveness of DDCD in boosting deep GNNs, we ex-
perimented on two deep GNNs: GCNII [44] and EGNN [80].

Hyperparameters. We adopted the same experimental setting
as DGN [79]. For Cora, Citeseer, and CoauthorCS, we used a dropout
rate of 0.6, L2 regularization of 5 · 10−4, and a learning rate of 5 ·
10−3. For Pubmed, we used a dropout rate of 0.6, L2 regularization
of 1 · 10−3, and a learning rate of 1 · 10−2. We conducted each exper-
iment five times and reported the average results. For BatchNorm,
PairNorm, and DGN, we followed the results reported by Zhou et
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GCN GAT ChebyDataset Layer
NN DE SN DM BN PN DGN DDCD NN DE SN DM BN PN DGN DDCD NN DE SN DM BN PN DGN DDCD

Cora
2L 82.20 79.94 79.41 81.15 73.90 71.00 82.00 80.36 80.90 81.44 78.25 79.93 77.80 71.00 81.10 79.72 81.40 79.56 78.56 79.63 67.92 65.52 79.98 79.70
15L 18.10 45.02 63.12 63.89 70.30 67.20 75.20 77.22↑2.02 16.80 44.70 52.37 53.46 33.10 49.60 71.80 73.70↑1.90 30.62 49.50 62.24 63.41 68.30 60.28 76.80 77.20↑0.40
30L 13.10 27.60 57.92 59.43 67.20 64.30 73.20 73.92↑0.43 13.00 24.42 38.59 40.57 25.00 30.20 51.30 56.33↑5.03 30.40 31.38 49.83 50.29 60.30 52.54 66.20 69.00↑2.80

Citeseer
2L 70.60 68.45 67.83 68.96 51.30 60.50 69.50 69.91 70.20 67.30 67.39 68.25 61.50 62.00 69.30 71.20↑1.90 67.78 67.12 65.23 64.46 47.50 52.40 65.66 67.20
15L 15.20 25.80 39.42 42.37 46.90 46.70 53.10 59.90↑6.80 22.60 21.66 30.67 38.53 28.00 41.40 52.60 53.10↑0.50 44.78 42.28 40.62 41.79 40.60 40.88 48.50 56.60↑8.10
30L 9.40 12.62 32.69 38.54 47.90 47.10 52.60 56.12↑3.52 7.70 7.74 12.73 28.66 21.40 33.30 45.60 46.20↑0.60 35.90 28.46 28.33 30.67 36.88 38.12 45.68 50.00↑4.32

Pubmed
2L 79.30 77.56 74.32 78.47 74.90 71.10 78.23 78.50 77.80 77.28 77.16 77.45 76.20 72.40 77.50 76.60 78.48 77.86 75.43 78.15 73.69 72.95 78.42 78.30
15L 22.50 34.24 57.63 62.57 73.70 70.60 76.10 77.70↑1.60 37.50 36.88 59.33 61.64 56.20 68.80 75.90 78.40↑2.50 46.36 44.66 59.62 61.03 70.22 69.16 76.08 77.50↑1.42
30L 18.00 22.56 21.98 37.43 70.40 70.40 76.90 77.10↑0.20 18.00 18.31 23.55 38.93 46.60 58.20 73.30 74.60↑1.30 39.58 40.52 57.23 59.06 71.14 57.74 70.24 74.20↑3.06

Coauthor.
2L 92.30 91.93 91.86 92.34 86.00 77.80 92.30 92.70↑0.36 91.50 90.63 90.42 91.67 89.40 85.90 91.80 91.92↑0.12 93.01 93.10 92.79 93.24 81.95 72.95 92.29 92.95
15L 72.20 37.61 45.63 52.13 78.50 69.50 83.70 85.34↑1.64 6.00 12.68 13.75 13.96 77.70 53.10 84.50 86.44↑1.94 70.04 35.02 48.77 53.83 76.81 57.74 83.36 89.03↑5.67
30L 3.30 26.53 34.32 40.71 84.30 64.50 84.40 84.48↑0.08 3.30 10.69 12.33 12.79 16.70 48.10 75.50 76.30↑0.80 35.18 20.33 31.44 34.73 81.77 65.80 79.04 82.58↑0.81

Table 2: The Node Classification Accuracy with 2, 15, and 30-layer GNNs. NN: vanilla GNN, DE: DropEdge [50], SN: SkipNode
[42], DM: DropMessage [15], BN: BatchNorm [27], PN: PairNorm [78], DGN: Differentiable Group Normalization [79]. DDCD:
Our method. Bold represents the highest accuracy. Underline represents the second-highest accuracy. See details in Section 4.1.

0

20

40

60

80

2 8 16 24 30

A
cc

u
ra

cy
%

Layers

None BN PN
DGN DDCD

0

0.2

0.4

0.6

2 8 16 24 30

R
IC

D

Layers

Figure 4: TheNodeClassificationAccuracy andRelative Inter-
Class Distance Comparison equipped with different regular-
ization methods. Our method outperforms the baselines in
different layer cases. Refer to Section 4.1 for more details.

al. [79] on GCN and GAT. To investigate the effects of hyperpa-
rameters, we adjusted the hyperparameters 𝛼 in {0.002, 0.004, 0.006,
0.008, 0.01} and 𝜏 in {0.01, 0.03, 0.05, 0.07, 0.09} on the Cora dataset,
reported the best performance with 𝛼 = 0.006 and 𝜏 = 0.05. Then
we fixed 𝜏 , adjusted 𝛼 in {6 · 10−6, 6 · 10−5, 6 · 10−4, 6 · 10−3} on
Citeseer, Pubmed, and CoauthorCS, reported the best performance
and recorded the values of 𝛼 respectively: 6 · 10−5 on Citeseer, 6 ·
10−4 on Pubmed and CoauthorCS.

4.1 Comparison with State-of-the-Art Methods
We provide comparison results on both regularization and dropout
methods with different backbones and layer numbers. Firstly, we
compare the baseline methods with 2, 15, and 30 layers on different
GNNs. As shown in Table 2, compared with vanilla GNNs, DDCD
significantly alleviates performance degradation in deep GNNs;
Compared with other baseline methods, DDCD can achieve the
highest classification performance in the same number of layers,
which means better discrimination of node features, i.e., mitigating
oversmoothing better. Subsequently, we further provided compari-
son results with different regularization methods in different layer
cases, reporting the node classification accuracy of GCN on the
Cora dataset, for a range of layer numbers in {2, 4, ..., 30}. As shown
in Figure 4, our proposed method achieved the best classification
accuracy across various layer numbers, indicating that it performs
better at mitigating oversmoothing in most cases. Additionally, to

Component Cora
DLD ICDD 2L 10L 15L 20L 30L AVG △

82.20 22.68 18.10 20.68 13.10 31.32 -
✓ 81.76 62.48 48.36 27.78 27.52 49.58 ↑18.26

✓ 81.76 67.24 68.84 65.08 40.50 64.68 ↑33.36
✓ ✓ 80.36 77.26 77.22 74.32 73.92 76.62 ↑45.30

Table 3: Ablation Study with DLD and ICDD. The precise
accuracy values are reported. See Section 4.2 for details.
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Figure 5: Ablation Study with DLD and ICDD. The node clas-
sification accuracy and Relative Inter-Class Distance are re-
ported. Please refer to Section 4.2 for more details.

quantitatively assess the performance of alleviating oversmooth-
ing, we reported the Relative Inter-Class Distance (RICD) on the
Cora dataset with various layers on the GCN model. Our method
consistently exhibited the largest RICD at all layer cases, indicating
the lowest degree of oversmoothing. All results confirm that our
method achieves superior mitigation compared to baseline methods
on different GNN models and various network layers.

4.2 Ablation Study
Firstly, we investigated the influence of two components, Dimension-
Level Decoupling (in Section 3.3) and Instance-Level Class-Difference
Decoupling (in Section 3.4), on the performance of the proposed
method. We empirically demonstrate that both components have
a positive impact on alleviating oversmoothing and can comple-
mentarily boost performance. Next, we investigate the effects of
hyperparameters, demonstrating the stability with different param-
eters. Besides, we provide comparisons between Relative Inter-Class
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Figure 6: Ablation Study on Hyperparameters. (a) reports the
ablation with different alpha 𝛼 , and (b) reports the ablation
with different temperatures 𝜏 . The results show the stability
of our method to hyperparameters. See details in Section 4.2.

Distance (RICD) and existing metrics for oversmoothing, demon-
strating the superiority of the proposed measurement.

Effect of Each Component. To thoroughly assess the effective-
ness of DDCD, we conducted extensive ablation experiments on
the Cora dataset with varying numbers of GCN layers. Based on
the results presented in Table 3 and Figure 5, two main conclusions
can be drawn. Firstly, both components have a positive impact on
mitigating oversmoothing and enhancing performance. As depicted
in Figure 5, both DLD and ICDD result in a larger RICD compared
to the baseline, signifying the effective mitigation of oversmooth-
ing; Additionally, as shown in Table 3, the utilization of DLD and
ICDD results in an average performance improvement of 18.26%
and 33.36% respectively, further indicating the successful alleviation
of oversmoothing, subsequently enhancing classification perfor-
mance across various layer scenarios. Secondly, the combination
of these two components can complement each other and further
enhance the performance. As illustrated in Table 3, the combination
of DLD and ICDD outperforms the baseline by an average of 45.30%,
underscoring the collaborative effect of both DLD and ICDD.

Effect of Hyperparameters. To investigate the impact of hy-
perparameters 𝜏 and 𝛼 for the proposed method, we conducted
two ablation experiments on the Cora dataset with 15-layer GCN.
Specifically, we performed the following experiments with DDCD
and reported the node classification accuracy: (1) we changed the
value of 𝛼 while keeping 𝜏 fixed at 0.05, and (2) changed the value
of temperature 𝜏 while keeping the value of 𝛼 fixed at 0.006.

In Experiment (1), as illustrated in Figure 6 (b), the performance
of DDCD remains stable with changes in 𝛼 , and is further boosted
with Dimension-Level Decoupling equipped; In Experiment (2), as
shown in Figure 6 (a), we observed that the performance of DDCD
remains stable with different values of 𝜏 , and is further improved
with ICDD equipped. Specifically, on the Cora dataset, our proposed
method achieves the best performance with 𝜏 = 0.05. We then apply
the same value of 𝜏 on the Citeseer, Pubmed, and CoauthorCS
datasets, and obtain similarly strong results. Both Experiment (1)
and (2) show the stability of our method to hyperparameters, and
the complementary of two modules.

Pair-wise Distance v.s. Relative Inter-Class Distance. The
pair-wise distance measures the degree of oversmoothing based on
the distance between node pairs [6, 23, 40]. However, the pair-wise
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Figure 7: Metric Comparisons. The SMV [40] and Relative
Inter-Class Distance (RICD) on the Cora dataset are reported.
RICD can accurately measure oversmoothing compared to
existing metrics. Please refer to Section 4.2.

distances are closely tied to graph information, such as class la-
bels. In the context of the node classification task, nodes in distinct
classes should display discernible pair-wise distances, while nodes
within the same class should exhibit closer pair-wise distances.
Failure to account for class information in the computation of pair-
wise distances results in an impact from class labels, leading to an
inaccurate assessment of oversmoothing. Specifically, we provide
the comparisons of Relative Inter-Class Distance and the existing
metric SMV from [40] on the GCN model. As depicted in Figure 7,
SMV fails to accurately reflect the superiority of different meth-
ods. Notably, PairNorm and BatchNorm cannot be distinguished in
SMV, and DGN demonstrates better oversmoothing alleviation but
lower SMV than PN and BN. In contrast, the proposed RICD accu-
rately reflects the superiority of different methods and the degree
of oversmoothing alleviation.

4.3 Generalization Analysis
We conducted comprehensive experiments to prove the general-
ization of our method in various scenarios. First, we conducted
experiments with SOTA deep GNN models, to emphasize the ef-
fectiveness of our approach in enhancing deep GNNs as a regu-
larization technique. Additionally, we conducted experiments to
demonstrate the robustness of our method in different settings and
layer numbers.Moreover,we visualized the learned node represen-
tations, which depicts that DDCD is feasible to learn discriminative
features for different classes.

Boosting Deep GNN Models. Our proposed DDCD can be
treated as a regularization for addressing oversmoothing, which
can be seamlessly incorporated into different deep GNN models.
To demonstrate the effectiveness of our method in enhancing deep
GNNs, we apply DDCD to two deep models [44, 80] for graph data,
with various network layers on the Cora dataset. As demonstrated
in Table 4, our method significantly enhances the performance of
deep GNNs by mitigating the oversmoothing issue.

Generalization to Large-Scale Graph. To demonstrate the
generalization of the proposed DDCD to the graph scalability, we
conduct experiments on the large-scale graph: ogbn-arxiv. To re-
duce the computational complexity, we randomly sample

√
𝑁 nodes

to apply DDCD in each GNN layer. As shown in Table 5, we perform
experiments on GCN and GAT with different layers, and the per-
formance is consistently improved across all cases, demonstrating
the robustness of DDCD to dataset scalability.
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GCNII [44] EGNN [80]
Method

2L 32L 64L 2L 32L 64L
Base 82.40 84.80 85.40 83.20 85.50 85.70

+ DDCD 82.60 85.60 86.30 83.80 85.67 86.10

Table 4: Experiments with Deep GNNs. Classification accu-
racy on the Cora Dataset is reported, indicating the effective-
ness of DDCD for alleviating oversmoothing in deep GNNs.

GCN GAT
Method

2L 15L 30L 2L 15L 30L
Base 70.40 70.60 68.50 68.40 72.70 72.70

+ DDCD 70.60 70.84 68.92 68.80 72.95 72.95

Table 5: Experiments on Large-Scale Graph. Classification
accuracy on the ogbn-arxiv dataset is reported. The results
show DDCD can generalize to large-scale graphs.

GCN
Method

2L 8L 10L 15L 20L 25L 30L
Base 71.79 35.78 12.44 8.49 8.35 8.36 8.35

+ DDCD 71.81 74.88 77.15 77.19 76.96 74.47 72.07

Table 6: Experiments on Imbalanced Classes. Classification
accuracy on the Cora dataset is reported. The results prove
the generalization of DDCD with imbalanced classes.

Generalization to Imbalanced Classes. We leveraged class
differences to address oversmoothing, and the performance of our
method may potentially be influenced by the imbalanced numbers
of nodes among different classes. To investigate the generalization
of DDCD to the imbalanced classes, we re-sampled the Cora dataset,
where one of the classes has three times as many nodes as the
other classes. As depicted in Table 6, our method consistently and
effectively mitigates oversmoothing in all layer cases, indicating
the robustness of DDCD to imbalanced classes.

Different Numbers of Layers with GAT/Cheby. To demon-
strate the generalization of DDCD with various layer numbers,
we provided experimental results for the GAT and Cheby models
with different numbers of layers. As depicted in Figure 8, we ex-
perimented from 2 to 30 layers, and the incorporation of DDCD
leads to a larger RICD and consistently improves classification ac-
curacy in all layer scenarios, signifying the effective alleviation of
oversmoothing and consequently boosting performance.

Node Representation Visualization. We visualized the node
representations of vanilla GCN, DGN [79], and DDCD with a 30-
layer model on the Cora dataset. As depicted in Figure 9 (a), when
with deep network architecture (30 layers), the node representa-
tions become mixed and cannot be clearly distinguished, indicating
severe oversmoothing and leading to a decline in classification
performance. Upon the integration of DGN [79], as illustrated in
Figure 9 (b), nodes can be roughly categorized by class, but the in-
appropriate grouping strategy blurs the nodes at the classification
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Figure 8: More Layer Cases with GAT/Cheby. The classifica-
tion accuracy and Relative Inter-Class Distance on the Cora
dataset are reported. The results demonstrate the generaliza-
tion of DDCD with different layers.

30L

(a) None

30L

(b) DGN

30L

(c) DDCD

Figure 9: Visualization of Node Representations: (a), (b), and
(c) visualized node embeddings with 30-layer vanilla GCN
and the one equipped with DGN [79]/DDCD. The result
demonstrates DDCD promotes discriminative features ef-
fectively. Colors indicate nodes from different classes.

boundaries. However, as shown in Figure 9 (c), the node repre-
sentations exhibit well discrimination and explicit classification
boundaries equipped with DDCD.

5 Conclusion
In deep GNNs, node representations become highly indistinguish-
able due to repeated aggregations, i.e., the oversmoothing issue. In
this paper, we construct a simple and effective dual-dimensional
regularization method to address the oversmoothing issue. Specifi-
cally, we consider the oversmoothing issue from two aspects of the
node embedding space: dimension and instance. At the dimension
level, we first reveal the dimensional causes for oversmoothing
and propose to alleviate oversmoothing by minimizing covariances
between dimensions to enhance node differentiation. Besides, at
the instance level, we propose to utilize class differences, alleviating
oversmoothing with explicit class boundaries. This research pro-
vides valuable insights for tacking oversmoothing in deepGNNs and
will facilitate potential real-world applications. In future work, it is
significant to generalize our instance-level method for tasks lacking
node labels, e.g., link prediction tasks, where linked/unlinked nodes
can be regarded as intra/inter-class samples and instance-level de-
coupling helps obtain discriminative node representations.
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