
Prospective Representation Learning for
Non-Exemplar Class-Incremental Learning

Wuxuan Shi1, Mang Ye1,2∗
1School of Computer Science, Wuhan University, Wuhan, China

2 Hubei Luojia Laboratory, Wuhan, China
{wuxuanshi, yemang}@whu.edu.cn

https://github.com/ShiWuxuan/NeurIPS2024-PRL

Abstract

Non-exemplar class-incremental learning (NECIL) is a challenging task that re-
quires recognizing both old and new classes without retaining any old class samples.
Current works mainly deal with the conflicts between old and new classes retrospec-
tively as a new task comes in. However, the lack of old task data makes balancing
old and new classes difficult. Instead, we propose a Prospective Representation
Learning (PRL) scheme to prepare the model for handling conflicts in advance.
In the base phase, we squeeze the embedding distribution of the current classes
to reserve space for forward compatibility with future classes. In the incremental
phase, we make the new class features away from the saved prototypes of old
classes in a latent space while aligning the current embedding space with the latent
space when updating the model. Thereby, the new class features are clustered in the
reserved space to minimize the shock of the new classes on the former classes. Our
approach can help existing NECIL baselines to balance old and new classes in a
plug-and-play manner. Extensive experiments on several benchmarks demonstrate
that our approach outperforms the state-of-the-art methods.

1 Introduction

In recent years, deep neural networks (DNNs) have achieved great success in static scenarios.
Research attention is increasingly turning to extending the learning capability of DNNs to open and
dynamic environments. An important aspect is to enable the network to accumulate knowledge from
new tasks as the input stream is updated (i.e., incremental learning [1; 2; 3]).

Whenever a new task arrives, it is costly to retrain the model with current and old data. Not to mention
that the old data is not fully available. A typical alternative is to fine-tune the network with new data
directly. However, this can lead to drastic performance degradation on previously learned tasks, a
phenomenon known as catastrophic forgetting [4; 5]. While storing exemplars of each class is a
simple approach to mitigate forgetting, it relies on the quality of saved exemplars and faces challenges
in storage and privacy, especially for sensitive domains such as medical imaging. Hence, this paper
focuses on coping with catastrophic forgetting during incremental learning without storing any old
samples, which is called non-exemplar class-incremental learning (NECIL) [6; 7].

In NECIL, a serious challenge is to discriminate between old and new classes without access to
old data. Most methods usually start considering handling conflicts between old and new classes
only when new tasks arrive. While some methods use stored prototypes to model the distribution
of old classes [8; 6; 9; 10], others extend the network structure to accommodate new classes [7; 11].
However, in the base phase (i.e., training on the first task), traditional training allows different classes

∗Corresponding Author: Mang Ye

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

to divide up all the embedding space, causing trouble for subsequent conflict resolution. As shown
in Fig. 1, in the incremental phase (i.e., training on tasks after the first one), with the influx of new
classes, there are overlaps of the old and new classes in the embedding space that are difficult to
discriminate. Moreover, due to the unavailability of old class samples, handling this conflict with
only new task data is intractable. Instead, we suggest addressing this issue by learning prospectively
at the feature level, which requires a two-pronged effort in both the base and incremental phases.

Traditional Training Prospective Learning
Base Phase

Class 1

Class 2

Class 3

···

···

···

Incremental Phase

Class 4 ···

Class 5 ···

o
ve

rl
a
p

Reserved

Reserved

R
eserved

Figure 1: The traditional training paradigm in NECIL con-
siders conflicts between old and new classes only when new
classes arrive and is prone to overlap. We suggest prospective
learning to reduce conflicts: (1) reserve space for unknown
classes; (2) make the newly coming class embedded in the
reserved space.

Firstly, the model should make room
in advance for the incoming classes in
the future. Thus, the space of past
classes does not need to be drasti-
cally squeezed when expanding new
classes. To this end, during the
base phase, we construct a preemp-
tive embedding squeezing constraint
to enforce intra-class concentration
and inter-class reserved separation.
Specifically, we push instances from
the same class closer together and in-
stances from different classes farther
apart in a mini-batch. It allows more
space to be reserved in the initial em-
bedding space, thus making the model
ready for future classes.

Secondly, the model should minimize
the shock and impact of the new
classes on the past classes, i.e., em-
bed the new classes into the reserved
space as much as possible. However,
achieving the desired embedding of
new classes when the old class data is
fully unavailable is difficult. Inspired
by previous works [6; 10], we try to accomplish this using prototypes (typically the class mean
in the deep feature space) saved for each old class. During the incremental phase, we propose a
prototype-guided representation update mechanism. Concretely, we use the network learned from
previous tasks to extract features from new task samples and project these features and the saved
prototypes into a latent space. In the latent space, the new class features are pushed away from the
region hosting the old class and embedded as much as possible in the reserved space with the help
of prototypes. We guide the update of the current model representation through the latent space to
reduce the shock of the new classes on the former classes.

In summary, combining the above two ideas, our Prospective Representation Learning (PRL) scheme
makes the following main contributions:

• We impose a preemptive embedding squeezing constraint to reserve space for future classes
by reinforcing intra-class concentration and inter-class reserved separation.

• We propose a prototype-guided representation update strategy that utilizes the saved proto-
types to reduce the impact of expanding new classes on old ones.

• Extensive experiments on four benchmarks suggest the superior performance of our approach
over the state-of-the-art. We also provide a detailed analys of our method.

2 Related Work

2.1 Class-Incremental Learning

Mainstream CIL methods can be roughly divided into three categories: rehearsal-based methods,
regularization-based methods, and structure-based methods.

2

Rehearsal-based methods store a portion of seen data in a fixed-size memory buffer and replay it
as new data arrives. Based on the stored data, some works use knowledge distillation techniques
to protect existing knowledge [12; 13; 14; 15], while others regularize the gradient to make more
efficient use of the stored samples [16; 17; 18]. Additionally, several works design new strategies for
memory management instead of simple random sampling. [19; 20; 21; 22]. Although rehearsal-based
methods effectively mitigate catastrophic forgetting, they are encumbered by privacy concerns and
become impractical under stringent storage constraints.

Regularization-based methods estimate the importance of different parameters for past tasks and
then limit the updating of these important parameters when learning new tasks [23; 24; 25; 26]. In
incremental learning, the storage of importance weights becomes essential. However, these methods
are encumbered by constraints on model parameters, consequently impeding knowledge transfer and
leading to suboptimal performance, particularly in long-sequence task streams.

Structure-based methods accommodate knowledge from new tasks by dynamically modifying the
network structure. Some works extend the network by assigning new parameters of different forms
to new tasks [27; 28; 29; 30]. While this approach adeptly manages extended task sequences and
sustains the performance of established classes, the linear growth of network parameters with the
number of tasks and the necessity for reasoning across multiple forward propagations pose significant
challenges. Parameter fusion [31] and selecting partial parameters for expansion [32] mitigates this
problem to some extent. An alternative is to mask part of the parameters that are highly correlated
with the previous task at the parameter level or unit level [33; 34; 35; 36]. Their performance is
limited by the backbone obtained on the first task.

2.2 Non-Exemplar Class-Incremental Learning

Recently, some works begin to focus on NECIL due to privacy and memory concerns [8; 37; 38;
39; 40; 41; 42; 43; 44; 45; 46], where the algorithms have no access to any past data. Li et al. [47]
combine knowledge distillation with fine-tuning in a first attempt at incremental learning without a
memory buffer. Zhu et al. [38] propose class augmentation and semantic augmentation to address
the representation bias and classifier bias caused by the lack of old task data. Yin et al. [37] use
model inversion technology to generate samples from previous tasks to alleviate forgetting. Based on
[37], Gao et al. [39] introduce relation-guided knowledge distillation to address the distributional gap
between generated data and real data.

Zhu et al. [6] combat catastrophic forgetting for the first time by preserving prototypes and augmenting
them. Yu et al. [8] address the problem of prototype outdating in the current representation space
by estimating the semantic drift of past tasks and compensating for it. Furthermore, Toldo et al. [9]
subdivide the drift into feature drift and semantic drift and compensate for both, thereby achieving
better results. Shi et al. [10] inject information about the current feature distribution into the prototype
to model the distribution of past tasks. Wang et al. [48] improve the prototype augmentation method
based on density to make the model more focused on features of the old class with low density.
Malepathirana et al. [49] use the domain information obtained from topological relations to optimize
prototype augmentation to reduce inter-class overlap. However, previous works deal with conflicts
between old and new classes only after the new data arrives and lack prospective consideration.

2.3 Embedding Space Regularization

Embedding space regularization has been extensively studied in literature [50; 51; 52]. Chaudhry
et al. [50] first propose learning tasks in different (low-rank) embedding subspaces that are kept
orthogonal to each other. They learn an isometric mapping by formulating network training as an
optimization problem on the Stiefel manifold. Another idea is to implement orthogonality in the
gradient space. Saha et al. [53] analyze network representations after learning each task with Singular
Value Decomposition (SVD) to find the basis of the subspaces and store them in memory. Moreover,
several methods promote forward compatibility through regularization in the initial phase. Zhou et
al. [54] assign virtual prototypes to compress embeddings of known classes and reserve space for
new classes. Shi et al. [55] encourage initial CIL learners to generate representations that are similar
to those of models trained jointly on all classes. Compared to previous works, we target CIL in
exemplar-free scenarios (NECIL). We consider how to resolve conflicts between new and old classes
during the incremental phases, in addition to reserving space in the initial phase.

3

3 Methodology

3.1 Problem Statement

The goal of NECIL is to continually train a unified model over a series of tasks to recognize all
classes learned so far. The data stream can be defined as D = {D0, D1, . . . DT }, where T is
the number of incremental phases. At any phase i, the training set Di consists of the sample set
Xi(0 ≤ i ≤ T) and the label set Yi. In particular, the classes of all phases are disjoint, i.e.,
Yi ∩ Yj = ∅,∀i ̸= j. It is notable that only Dt is available at current phase t. There are no old
training sets (i.e., D0:t−1) to access or save in memory. To facilitate analysis, we represent the
model with two components: a feature extractor F with parameters θ and a unified classifier G with
parameters φ. For a comprehensive evaluation of the model, the test set at phase t includes classes
from all the seen label sets Y0 ∪ Y1 ∪ . . . ∪ Yt. At the time of testing, the model does not have access
to the task ID, i.e., it does not know from which task the test sample come.

3.2 Baseline

We adapt the paradigm of existing NECIL works [6; 7; 11; 10] as our baseline, which primarily
uses knowledge distillation and prototype rehearsal. Specifically, at the base phase (i.e., t = 0), the
classification model is optimized under full supervision:

argmin
θt,φt

Lt = Lce(θt, φt;Dt) = − E
(x,y)∼Dt

[y · log (Gφt
(Fθt(x)))], (1)

where Lt represents the overall loss function, Lce is the cross-entropy loss.

At the incremental phase (i.e., t > 0), standard fully supervised training seeks to minimize the
following objective:

Lt = Lce(θt, φt;D0:t−1) + Lce(θt, φt;Dt). (2)
However, this is especially challenging since previous training sets D0:t−1 are assumed to be
unavailable in the NECIL setting. The absence of the first term in eq. (2) leads to a bias in favor of
current classes in the feature extractor Fθt and the classifier Gφt

. To address this problem, existing
methods [38; 6; 10] adopt knowledge distillation and prototype rehearsal to cope with the bias.
Specifically, they take the frozen feature extractor Fθt−1

from the previous phase t− 1 as a teacher
and the current one Fθt as a student. A distillation term is introduced to encourage the model to
mimic the previous representation:

Lkd(θt; θt−1, Dt) =
∑
x∈Xi

∥Fθt(x)−Fθt−1
(x)∥2, (3)

where ∥ · ∥2 denotes Euclidean distance. Knowledge distillation helps maintain existing knowledge
in Fθt−1

, thus mitigating bias in the current feature extractor.

For the bias in the classifier, we use class-representative prototypes [6] to balance the optimization.
Specifically, after the training of t− 1 phase, we compute a prototype pc for each class c:

pc = E
(x,y)∼Dt−1

[Fθt−1
(x) | y = c]. (4)

All prototypes of learned classes P 0:t−1 = {pc, c}c∈Y0:t−1 are stored in memory. In each training
iteration of current phase t, existing works [6; 38; 10] augment the memorized prototypes P 0:t−1

to P̃ 0:t−1 and train the classifier jointly with the current data Dt. In particular, the prototypes are
involved in the standard classification optimization with the following objective:

Lpro(φt; P̃ 0:t−1) = − E
(p̃c,c)∼P̃ 0:t−1

[c · log (Gφt
(p̃c))]. (5)

Compared to exemplar rehearsal, prototype rehearsal is more memory efficient and privacy secure. In
conclusion, the overall loss function of the baseline can be expressed as:

Lt = Lce(θt, φt;Dt) + α1Lkd(θt; θt−1, Dt) + α2Lpro(φt; P̃ 0:t−1), (6)

where α1 and α2 are the weights of the distillation loss and prototype loss, respectively. The specific
implementation of prototype augmentation is not our focus. In this paper, we implement our approach
based on the pipeline in PRAKA [10]. Our method can be incorporated with different augmentations
and plugged into other baselines, such as PASS [6] and IL2A [38].

4

align

A. Base Phase

𝐷0

B. Incremental Phase

PES

CE Loss

Inter-class
reserved separation

Reserved

Space

Intra-class

concentration

Constraints

prototypefeature

𝐷𝑡
current model

frozen old model

KD

P
ro

jecto
r

P
G

R
U

current space

latent space

stored prototypes

…

Preemptive Embedding Squeezing

Figure 2: Overview of our Prospective Representation Learning (PRL) for NECIL. (A) During the
base phase, we impose a preemptive embedding squeezing (PES) constraint to squeeze the space of
the current class in preparation for accepting future new classes. (B) During the incremental phase,
a prototype-guided representation update (PGRU) strategy is proposed to keep new class features
away from old class prototypes in the latent space, which guides the update of the current model to
mitigate the confusion of new classes with old classes.

3.3 Prospective Representation Learning

An overview of our Prospective Representation Learning scheme is shown in Fig. 2. It consists of a
preemptive embedding squeezing constraint in the base phase and a prototype-guided representation
update strategy in the incremental phase. The specific implementation of the two components is
described in the following.

Preemptive Embedding Squeezing. In the base phase (t = 0), a common training paradigm of
NECIL is to optimize the empirical loss over the training set Dt as eq. (1). Without consideration of
the future incremental learning, it overspreads the embedding space. As new classes come in, the
embedding of old classes needs to be squeezed to make room for new ones. However, striking a
balance in this process is challenging, especially without the old data. Therefore, we would like to be
proactive and reserve space for future classes by squeezing the embedding of current classes in the
base phase. Specifically, we impose a preemptive embedding squeezing (PES) constraint to cluster
features of the same class and make features of different classes separate from each other. To reduce
complexity, the PES loss is computed over a mini-batch data B = {xi, yi}ni=1 ∈ Dt, which can be
formulated as:

s =
∑

∀xi,xj∈B
yi=yj

⟨Fθt(x
i),Fθt(x

j)⟩, (7)

d =
∑

∀xi,xk∈B
yi ̸=yk

⟨Fθt(x
i),Fθt(x

k)⟩, (8)

LPES(θt;Dt) = (1− s) + λ ∗ (1 + d), (9)
where n is the batch size, ⟨·, ·⟩ denotes the cosine similarity operator. As LPES is minimized, the
first term (1− s) facilitates intra-class concentration, and the second term (1 + d) aims to reinforce
inter-class reserved separation, as shown in Fig. 2 (A). Since s, d ∈ [−1, 1), both terms are greater
than zero. The hyper-parameter λ controls the priority ratio of intra-class constraints and inter-class
constraints. Since our PES is implemented in a vectorized manner on the mini-batch, it does not incur
excessive computational burden.

With the preemptive embedding squeezing constraint, the optimization objective for the base phase
training in eq. (1) can be rewritten as:

Lt = Lce(θt, φt;Dt) + γ ∗ LPES(θt;Dt). (10)

where γ is a hyperparameter controlling the weights of loss.

5

Prototype-Guided Representation Update. In the incremental phase (t > 0), we would like to
embed the new class into the previously reserved space. The plain idea is to keep the new classes well
clustered and distanced from the old ones. To this end, we propose a prototype-guided representation
update (PGRU) strategy, as shown in Fig. 2 (B), which employs prototypes as proxies for past classes
to guide the embedding of new classes into the appropriate space. However, it is not practical to
establish a relationship directly between the saved prototypes and the new class features extracted
by the current model due to the continual updating of the current embedding space. To mitigate
the mismatch between the old class prototype and the new class features, on the one hand, we use
the frozen model from the previous phase t − 1 to extract the new class features, which has been
implemented in the baseline as shown in eq. (3); on the other hand, the new classes features and the
saved prototypes are projected into a unified latent space. Then, we construct orthogonal structures
between the new class features and the old class prototypes in the latent space:

Lort =
∑

∀xi∈B
∀pc∈P 0:t−1

|⟨Pϕt
(Fθt−1

(xi)),Pϕt
(pc)⟩|, (11)

where | · | denotes the absolute value operator, P is a projector with parameters ϕ. Similarly, Lort is
also implemented in the mini-batch to reduce computational costs. Inspired by [56], we use a simple
undercomplete autoencoder as the projector. It consists of a linear layer followed by ReLU activation
that maps the features to a low-dimensional subspace and another linear layer followed by sigmoid
activation that maps the features back to high dimensions. When minimizing Lort, it will promote
orthogonality between the new class features and the old class prototypes. By the above operations,
we would like to allow the new class of features to be embedded in appropriate positions and to keep
clustering in the latent space.

Algorithm 1 Proposed Method

input: Data streams D, Model {Fθ,Gφ}, Factors λ and γ, Projector Pϕt

1: for all phases t ∈ {0, 1, .., T} do
2: Get training set Dt

3: for minibatch B = {xi, yi}ni=1 ∈ Dt do
4: if t = 0 then
5: Compute Lt = Lce + γ ∗ LPES

6: Update model {Fθ,Gφ}
7: else
8: Get prototypes set P 0:t−1

9: Compute Lt = Lce + α1Lkd + α2Lpro + α3LPGRU

10: Update model {Fθ,Gφ} and projector Pϕt

11: end if
12: end for
13: Compute pc = E

(x,y)∼Dt

[Fθt(x) | y = c]

14: Update prototypes set P 0:t−1

15: end for
16: return Model {Fθt ,Gφt}

Our ultimate goal is to guide the update of the current model. Hence, we align the current embedding
space with the latent space as:

Lalign =
∑
x∈Xi

LMSE(Pϕt
(Fθt−1

(xi)),Fθt(x
i)), (12)

where LMSE is mean squared error (MSE) loss. In summary, the PGRU loss can be defined as:

LPGRU = Lort(ϕt;Dt,P 0:t−1) + Lalign(θt, ϕt;Dt). (13)

In the incremental phase, the optimization objective in eq. (6) can be rewritten as:

Lt =Lce(θt, φt;Dt) + α1Lkd(θt; θt−1, Dt)+

α2Lpro(φt; P̃ 0:t−1) + α3LPGRU (θt, ϕt;Dt,P 0:t−1).
(14)

The main procedure is summarized in algorithm 1.

6

4 Experiment

4.1 Experimental Setting

Dataset. We conduct comprehensive experiments on four public datasets: CIFAR-100 [57], TinyIm-
ageNet [58], ImageNet-Subset and ImageNet-1K [59]. CIFAR-100 consists of 100 classes, where
each class contains 500 training images and 100 testing images with size 32×32. TinyImageNet
has 200 classes in total, and the image size is 64×64. Each class in TinyImageNet contains 500
training images and 50 testing images. ImageNet-1K is a large-scale dataset comprising about 1.28
million images for training and 50,000 for validation with 500 images per class. ImageNet-Subset is
a 100-class subset randomly chosen (random seed 1993) from the original ImageNet-1K. The image
size of ImageNet-1K is much larger than the other two datasets, which poses a test of sensitivity to
large-scale data.

Protocol. Following the setting in [6; 7; 10], we divide around half the classes for the base phase, and
the rest are divided equally into all the incremental phases. For CIFAR-100 and ImageNet-Subset: 1)
50 classes for base phase and 5 incremental phases of 10 classes; 2) 50 classes for base phase and 10
incremental phases of 5 classes; 3) 40 classes for base phase and 20 incremental phases of 3 classes.
For TinyImageNet, we start by training the model with 100 classes in the base phase and distribute
the remaining classes into three incremental settings: 1) 5 incremental phases of 20 classes; 2) 10
incremental phases of 100 classes; 3) 20 incremental phases of 5 classes.

Implementation details. Our method is implemented with PyCIL [60]. For a fair comparison with
[6], we adopt ResNet-18 [61] as the backbone network. The batch size is set to 64 for CIFAR-100
and TinyImageNet and 128 for ImageNet-Subset and ImageNet-1K. During training, the model is
optimized by the Adam optimizer with β1 = 0.9, β2 = 0.999 and ϵ = 1e−8 (weight decay 2e-4). For
ImageNet-1K, the learning rate starts at 0.0005 for all phases. The learning rate decays to 1/10 of
the previous value every 70 epochs (160 epochs in total) in the base phase and every 45 epochs (100
epochs in total) in each incremental phase. For other datasets, the learning rate starts from 0.001 and
decays to 1/10 of the previous value every 45 epochs (100 epochs in total) for all phases. We use
λ = 0.5 and γ = 0.1 for all datasets. Regarding the loss weights, for comprehensive performance
considerations and with reference to previous studies [6; 48], we set α1 = 10, α2 = 10, and α3 = 2
for training. We conduct our experiments on an RTX4090 GPU.

Metric. We evaluate the methods in terms of average incremental accuracy. Average incremental
accuracy AT is computed as the average of the accuracy of all phases (including the base phase) and
is a fair metric to compare the overall incremental performance of different methods:

AT =
1

T + 1

T∑
t=0

at, (15)

where at is the average accuracy over all seen classes on phase t.

4.2 Comparison with SOTA

We compare our method with the state-of-the-art (SOTA) methods of NECIL (EWC [23], LwF_MC
[1], MUC [62], SDC [8], PASS [6], SSRE [7], SOPE [11], POLO [48], PRAKA [10] and NAPA-VQ
[49]). "Fine-tuning" refers to continuously fine-tuning the network on the new task with only cross-
entropy loss. "Joint" means that when learning a new task, all data from past tasks are available to
jointly train the model, which can be considered as an upper bound of the CIL model. The results
reported for PASS are obtained with self-supervised learning.

The quantitative comparisons of average incremental accuracy are reported in Tab. 1. In comparison
with the SOTA, our method improves by 1.4% and 6.0% on CIFAR-100 and TinyImageNet datasets,
respectively. To further investigate the behavior of different methods on larger data, we also evalu-
ated their performance on ImageNet-Subset. Compared with suboptimal results, PRL achieves an
average improvement of 3.6%. The outstanding performance on ImageNet-Subset demonstrates the
reliability of our method. To provide a more nuanced view of the changes in performance of the
different methods over the course of incremental learning, We show accuracy curves for CIFAR-100,
TinyImageNet and ImageNet-Subset in Fig. 3. The accuracy of our method remains ahead as we
continue to learn new tasks. By prospective learning, our approach demonstrates strengths early on
that will be maintained and even enlarged over the course of continuously learning new tasks.

7

Table 1: Quantitative comparisons of the average incremental accuracy (%) with other methods on
CIFAR-100, TinyImageNet and ImageNet-Subset. P represents the number of incremental phases.
The best performance is shown in bold, and the sub-optimal performance is underlined. The relative
improvement compared to the SOTA NECIL methods is shown in red. The standard deviation (S.D.)
of the three runs is shown in the last row.

CIFAR-100 TinyImageNet ImageNet-Subset
Methods

P=5 P=10 P=20 P=5 P=10 P=20 P=5 P=10 P=20
Fine-tuning 23.15 12.96 7.93 18.64 10.68 5.75 23.43 13.12 7.96
Joint 76.72 76.72 76.72 63.08 63.08 63.08 78.94 78.94 78.94
EWC [23] 24.48 21.20 15.89 18.80 15.77 12.39 — 20.40 —
LwF_MC [1] 45.93 27.43 20.07 29.12 23.10 17.43 — 31.18 —
MUC [62] 49.42 30.19 21.27 32.58 26.61 21.95 — 35.07 —
SDC [8] 56.77 57.00 58.90 — — — — 61.12 —
PASS [6] 63.47 61.84 58.09 49.55 47.29 42.07 64.40 61.80 51.29
SSRE [7] 65.88 65.04 61.70 50.39 48.93 48.17 — 67.69 —
SOPE [11] 66.64 65.84 61.83 53.69 52.88 51.94 — 69.22 —
POLO [48] 68.95 68.02 65.71 54.90 53.38 49.93 70.81 69.11 —
PRAKA [10] 70.02 68.86 65.86 53.32 52.61 49.83 69.81 68.98 63.95
NAPA [49] 70.44 69.04 67.42 52.77 51.78 49.51 69.15 68.83 63.09
PRL (Ours) 71.26 70.17 68.44 58.12 57.24 54.51 72.85 71.54 66.88
Improvement +0.82 +1.13 +1.02 +3.22 +3.86 +2.57 +2.04 +2.32 +2.93
S.D. ±0.19 ±0.31 ±0.24 ±0.48 ±0.41 ±0.36 ±0.25 ±0.27 ±0.37

40

50

60

70

80

50 60 70 80 90 100

to
p

-1
 A

cc
(%

)

number of classes

ImageNet -Subset (10 phases)

40

50

60

70

80

40 52 64 76 88 100

to
p

-1
 A

cc
(%

)

number of classes

CIFAR-100 (20 phases)

30

40

50

60

70

100 120 140 160 180 200

to
p

-1
 A

cc
(%

)

number of classes

TinyImageNet (20 phases)

40

50

60

70

80

50 60 70 80 90 100

to
p

-1
 A

cc
(%

)

number of classes

CIFAR-100 (10 phases)

40

50

60

70

80

50 60 70 80 90 100

to
p

-1
 A

cc
(%

)

number of classes

CIFAR-100 (5 phases)

30

40

50

60

70

100 120 140 160 180 200

to
p

-1
 A

cc
(%

)

number of classes

TinyImageNet (10 phases)

30

40

50

60

70

100 120 140 160 180 200

to
p

-1
 A

cc
(%

)

number of classes

TinyImageNet (5 phases)

Figure 3: Detailed accuracy curves showing the top-1 accuracy of each incremental phase on CIFAR-
100, TinyImageNet and ImageNet-Subset.

4.3 Ablation Study

To analyze the impact of each component in our method, we perform several ablation studies on
CIFAR-100 and TinyImageNet datasets. We use the prototype augmentation technique in [10] as
eq. (5) in our baseline. As shown in Tab. 2, both preemptive embedding squeezing (PES) constraint
and prototype-guided representation update (PGRU) strategy improve the performance of PRL.
Furthermore, the table shows that PES plays a more central role than PGRU. This is reasonable since
the space reserved by PES for future classes is the basis for the PGRU to guide new classes to embed
in the representation space during the incremental phase.

4.4 Analysis

Visualization. To analyze the impact of PRL on representation learning, we visualize the embedding
space of 2D feature vectors on CIFAR-100 (5 phases) with t-SNE [63] in Fig. 4. Specifically, we (1)

8

Table 2: Ablation study (in average incremental accuracy) of our method on CIFAR-100 and
TinyImageNet datasets.

CIFAR-100 TinyImageNet
Methods

P=5 P=10 P=20 P=5 P=10 P=20
baseline 69.25 68.52 65.93 55.04 54.15 51.65
baseline w/ PES 70.57 69.64 67.58 57.08 55.84 53.58
baseline w/ PGRU 70.36 69.23 67.17 56.79 56.05 53.16
PRL 71.26 70.17 68.44 58.12 57.24 54.51

Baseline PRL

B
as

e
p

h
as

e
(t

=
0

)

old class features new class features

La
st

 p
h

as
e

(t
=

T=
5

)

Baseline PRL

Figure 4: Visualization of the impact of PRL on the feature representations. Dashed circles and
arrows highlight observable differences between baseline and PRL. PRL visually concentrates the
distribution of features within classes, disperses the distribution of features between classes, and
mitigates inter-class confusion.

visualize the features of a randomly selected subset of classes from D0 (old class features) after the
base phase, and (2) visualize the old class features along with a subset of classes from DT (new class
features) after the last phase. As shown in the first row, once the training of the base phase (t = 0) is
complete, the model integrated with PRL has more tightly clustered intra-class distributions (blue
circles) and more dispersed inter-class distributions (�). Thus, more space is reserved for learning
new classes. The second row is visualized after the last phase (t = T = 5). It can be observed that
the overlap (red circles) in the baseline model increases, causing confusion between the old and new
classes. In contrast, PRL reduces the overlap between classes, making them easier to distinguish.
Moreover, the new classes are farther away from the old ones (�) compared to the baseline.

Comparison of the confusion matrix. Figure 5 compares the confusion matrices obtained by fine-
tuning, PASS [6], NAPA-VQ [49] and our PRL on CIFAR-100. The diagonal entries indicate correct
classification, while the non-diagonal entries indicate misclassification. Due to the forgetting of old
classes, fine-tuning produces predictions that are biased toward the most recent classes, showing
a strong confusion on the last task. PASS clearly mitigates this confusion but still predicts more
intensively on recent tasks. The predictions of NAPA-VQ are largely centered on the diagonal, but its
predictions are more accurate for the initial classes that appear in the base phase (the red patches are
more localized in the first half of the diagonal). In contrast, there are more red patches visible along
the diagonal and more evenly distributed in the confusion matrix of PRL, which explains the higher
average accuracy of our method compared to NAPA-VQ and the absence of a serious bias towards
either new or old classes.

(b) PASS (c) NAPA-VQ (d) PRL(Ours)(a) Fine-tuning

Figure 5: The comparison of confusion matrix of fine-tuning, PASS, NAPA-VQ and our method on
CIFAR-100 (10 phases).

9

40

50

60

70

80

5 10 20

A
cc

u
ra

cy
 (

%
)

Phase

Current Task Accuracy

40

50

60

70

80

0-4 0-9 0-19

A
cc

u
ra

cy
 (

%
)

Phase

Old Tasks Average Accuracy

Figure 6: The traditional training paradigm in NECIL con-
siders conflicts between old and new classes only when
new classes arrive and is prone to overlap. We propose
prospective learning to reduce conflicts: (1) reserve space
for unknown classes; (2) make the newly coming class
embedded in the reserved space.

Plasticity and stability analysis. An
incremental learner should acquire new
knowledge of the current task for the
sake of plasticity and also preserve
knowledge from previous tasks for the
sake of stability [64; 65]. We present
an analysis of the plasticity and stability
of the different methods in Fig. 6. First,
we observe a gradual decline in aver-
age performance on past tasks during
incremental learning. This is rational
because experiencing more tasks also
results in heavier catastrophic forgetting.
Nonetheless, our method exhibits better
stability due to less degradation and con-
sistently superior average performance
on old tasks. Then we turn our attention
to the current task and also found a per-
formance degradation as more and more tasks are learned. This corresponds to a gradual reduction
in plasticity since tasks are sampled uniformly from the set of possible tasks, which is consistent
with observations from previous studies [66; 67]. PRAKA [10] starts with good performance, but its
plasticity degrades as more tasks are learned. NAPA-VQ consistently performs poorly on the current
task, which is also in line with the results in Fig. 5. Remarkably, PRL maintains a good performance
on the current task and has yet to show a visible decline. In general, our method achieves a better
trade-off between stability and plasticity.

5 Conclusion and Limitation

In this work, we consider the conflict between old and new classes in NECIL from a prospective
view. In the base phase, we construct a preemptive embedding squeezing constraint to reserve space
for future classes by enforcing intra-class concentration and inter-class reserved separation. In the
incremental phase, we propose a prototype-guided representation update (PGRU) strategy, which
reduces the impact on the old class during model update by keeping the new class embedding away
from the old class prototype. In cases where exemplars cannot be saved, waiting until the conflict
arrives could exacerbate the problem, and we offer a novel solution. Through extensive experiments
on four public benchmarks, our method exhibits excellent average performance and can provide a
good balance between stability and plasticity. However, since the number and distribution of unknown
classes cannot be predicted, how to rationally allocate the space of base classes in prospective learning
is open to further discussion.

Acknowledgments

The numerical calculations in this paper have been done on the supercomputing system in the
Supercomputing Center of Wuhan University. This work is partially supported by National Natural
Science Foundation of China under Grant (62176188, 62361166629, 62225113, 62306215), and the
Special Fund of Hubei Luojia Laboratory (220100015).

References
[1] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier and

representation learning,” in CVPR, 2017, pp. 2001–2010.

[2] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. Van De Weijer, “Class-
incremental learning: survey and performance evaluation on image classification,” IEEE TPAMI,
vol. 45, no. 5, pp. 5513–5533, 2022.

[3] D.-W. Zhou, Q.-W. Wang, Z.-H. Qi, H.-J. Ye, D.-C. Zhan, and Z. Liu, “Deep class-incremental
learning: A survey,” arXiv preprint arXiv:2302.03648, 2023.

10

[4] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The
sequential learning problem,” in Psychology of learning and motivation, 1989, pp. 109–165.

[5] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in cognitive sciences,
pp. 128–135, 1999.

[6] F. Zhu, X.-Y. Zhang, C. Wang, F. Yin, and C.-L. Liu, “Prototype augmentation and self-
supervision for incremental learning,” in CVPR, 2021, pp. 5871–5880.

[7] K. Zhu, W. Zhai, Y. Cao, J. Luo, and Z.-J. Zha, “Self-sustaining representation expansion for
non-exemplar class-incremental learning,” in CVPR, 2022, pp. 9296–9305.

[8] L. Yu, B. Twardowski, X. Liu, L. Herranz, K. Wang, Y. Cheng, S. Jui, and J. v. d. Weijer,
“Semantic drift compensation for class-incremental learning,” in CVPR, 2020, pp. 6982–6991.

[9] M. Toldo and M. Ozay, “Bring evanescent representations to life in lifelong class incremental
learning,” in CVPR, 2022, pp. 16 732–16 741.

[10] W. Shi and M. Ye, “Prototype reminiscence and augmented asymmetric knowledge aggregation
for non-exemplar class-incremental learning,” in ICCV, 2023, pp. 1772–1781.

[11] K. Zhu, K. Zheng, R. Feng, D. Zhao, Y. Cao, and Z.-J. Zha, “Self-organizing pathway expansion
for non-exemplar class-incremental learning,” in ICCV, 2023, pp. 19 204–19 213.

[12] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large scale incremental learning,”
in CVPR, 2019, pp. 374–382.

[13] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a unified classifier incrementally via
rebalancing,” in CVPR, 2019, pp. 831–839.

[14] A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle, “Podnet: Pooled outputs distillation
for small-tasks incremental learning,” in ECCV, 2020, pp. 86–102.

[15] M. Kang, J. Park, and B. Han, “Class-incremental learning by knowledge distillation with
adaptive feature consolidation,” in CVPR, 2022, pp. 16 071–16 080.

[16] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro, “Learning to learn
without forgetting by maximizing transfer and minimizing interference,” in ICLR, 2018.

[17] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” in NeurIPS,
2017.

[18] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning with
a-gem,” in ICLR, 2018.

[19] J. Bang, H. Kim, Y. Yoo, J.-W. Ha, and J. Choi, “Rainbow memory: Continual learning with a
memory of diverse samples,” in CVPR, 2021, pp. 8218–8227.

[20] Y. Liu, B. Schiele, and Q. Sun, “Rmm: Reinforced memory management for class-incremental
learning,” in NeurIPS, 2021, pp. 3478–3490.

[21] Z. Sun, Y. Mu, and G. Hua, “Regularizing second-order influences for continual learning,” in
CVPR, 2023, pp. 20 166–20 175.

[22] Z. Luo, Y. Liu, B. Schiele, and Q. Sun, “Class-incremental exemplar compression for class-
incremental learning,” in CVPR, 2023, pp. 11 371–11 380.

[23] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming catastrophic forgetting in
neural networks,” PNAS, pp. 3521–3526, 2017.

[24] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,” in ICML,
2017, pp. 3987–3995.

[25] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory aware
synapses: Learning what (not) to forget,” in ECCV, 2018, pp. 139–154.

11

[26] I. Paik, S. Oh, T. Kwak, and I. Kim, “Overcoming catastrophic forgetting by neuron-level
plasticity control,” in AAAI, 2020, pp. 5339–5346.

[27] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with dynamically expandable
networks,” in ICLR, 2018.

[28] C.-Y. Hung, C.-H. Tu, C.-E. Wu, C.-H. Chen, Y.-M. Chan, and C.-S. Chen, “Compacting,
picking and growing for unforgetting continual learning,” in NeurIPS, 2019.

[29] S. Yan, J. Xie, and X. He, “Der: Dynamically expandable representation for class incremental
learning,” in CVPR, 2021, pp. 3014–3023.

[30] Z. Hu, Y. Li, J. Lyu, D. Gao, and N. Vasconcelos, “Dense network expansion for class incre-
mental learning,” in CVPR, 2023, pp. 11 858–11 867.

[31] F.-Y. Wang, D.-W. Zhou, H.-J. Ye, and D.-C. Zhan, “Foster: Feature boosting and compression
for class-incremental learning,” in European conference on computer vision. Springer, 2022,
pp. 398–414.

[32] D.-W. Zhou, Q.-W. Wang, H.-J. Ye, and D.-C. Zhan, “A model or 603 exemplars: Towards
memory-efficient class-incremental learning,” in ICLR, 2022.

[33] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catastrophic forgetting with
hard attention to the task,” in ICML, 2018, pp. 4548–4557.

[34] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single network to multiple tasks
by learning to mask weights,” in ECCV, 2018, pp. 67–82.

[35] D. Abati, J. Tomczak, T. Blankevoort, S. Calderara, R. Cucchiara, and B. E. Bejnordi, “Con-
ditional channel gated networks for task-aware continual learning,” in CVPR, 2020, pp. 3931–
3940.

[36] T. Konishi, M. Kurokawa, C. Ono, Z. Ke, G. Kim, and B. Liu, “Parameter-level soft-masking
for continual learning,” in ICML, 2023.

[37] J. Smith, Y.-C. Hsu, J. Balloch, Y. Shen, H. Jin, and Z. Kira, “Always be dreaming: A new
approach for data-free class-incremental learning,” in ICCV, 2021, pp. 9374–9384.

[38] F. Zhu, Z. Cheng, X.-Y. Zhang, and C.-l. Liu, “Class-incremental learning via dual augmentation,”
NeurIPS, pp. 14 306–14 318, 2021.

[39] Q. Gao, C. Zhao, B. Ghanem, and J. Zhang, “R-dfcil: Relation-guided representation learning for
data-free class incremental learning,” in European Conference on Computer Vision. Springer,
2022, pp. 423–439.

[40] A. Panos, Y. Kobe, D. O. Reino, R. Aljundi, and R. E. Turner, “First session adaptation: A
strong replay-free baseline for class-incremental learning,” in ICML, pp. 18 820–18 830.

[41] D. Rymarczyk, J. van de Weijer, B. Zieliński, and B. Twardowski, “Icicle: Interpretable class
incremental continual learning,” in ICCV, 2023, pp. 1887–1898.

[42] A. Roy, V. K. Verma, S. Voonna, K. Ghosh, S. Ghosh, and A. Das, “Exemplar-free continual
transformer with convolutions,” in ICCV, 2023, pp. 5897–5907.

[43] H. Zhuang, R. He, K. Tong, Z. Zeng, C. Chen, and Z. Lin, “Ds-al: A dual-stream analytic
learning for exemplar-free class-incremental learning,” in AAAI, vol. 38, no. 15, 2024, pp.
17 237–17 244.

[44] H. Zhuang, Z. Weng, H. Wei, R. Xie, K.-A. Toh, and Z. Lin, “Acil: Analytic class-incremental
learning with absolute memorization and privacy protection,” NeurIPS, vol. 35, pp. 11 602–
11 614, 2022.

[45] H. Zhuang, Y. Chen, D. Fang, R. He, K. Tong, H. Wei, Z. Zeng, and C. Chen, “G-acil:
Analytic learning for exemplar-free generalized class incremental learning,” arXiv preprint
arXiv:2403.15706, 2024.

12

[46] X. Liu, J.-T. Zhai, A. D. Bagdanov, K. Li, and M.-M. Cheng, “Task-adaptive saliency guidance
for exemplar-free class incremental learning,” in CVPR, 2024, pp. 23 954–23 963.

[47] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE TPAMI, pp. 2935–2947, 2017.

[48] S. Wang, W. Shi, Y. He, Y. Yu, and Y. Gong, “Non-exemplar class-incremental learning via
adaptive old class reconstruction,” in ACM MM, 2023, pp. 4524–4534.

[49] T. Malepathirana, D. Senanayake, and S. Halgamuge, “Napa-vq: Neighborhood-aware prototype
augmentation with vector quantization for continual learning,” in ICCV, 2023, pp. 11 674–
11 684.

[50] A. Chaudhry, N. Khan, P. Dokania, and P. Torr, “Continual learning in low-rank orthogonal
subspaces,” NeurIPS, vol. 33, pp. 9900–9911, 2020.

[51] R. M. French, “Dynamically constraining connectionist networks to produce distributed, orthog-
onal representations to reduce catastrophic interference,” in CogSci, 2019, pp. 335–340.

[52] Y. Guo, W. Hu, D. Zhao, and B. Liu, “Adaptive orthogonal projection for batch and online
continual learning,” in AAAI, vol. 36, no. 6, 2022, pp. 6783–6791.

[53] G. Saha, I. Garg, and K. Roy, “Gradient projection memory for continual learning,” arXiv
preprint arXiv:2103.09762, 2021.

[54] D.-W. Zhou, F.-Y. Wang, H.-J. Ye, L. Ma, S. Pu, and D.-C. Zhan, “Forward compatible few-shot
class-incremental learning,” in CVPR, 2022, pp. 9046–9056.

[55] Y. Shi, K. Zhou, J. Liang, Z. Jiang, J. Feng, P. H. Torr, S. Bai, and V. Y. Tan, “Mimicking the
oracle: An initial phase decorrelation approach for class incremental learning,” in CVPR, 2022,
pp. 16 722–16 731.

[56] P. S. Bhat, B. Zonooz, and E. Arani, “Task-aware information routing from common representa-
tion space in lifelong learning,” in ICLR, 2022.

[57] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.

[58] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7, no. 7, p. 3,
2015.

[59] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in CVPR, 2009, pp. 248–255.

[60] D.-W. Zhou, F.-Y. Wang, H.-J. Ye, and D.-C. Zhan, “Pycil: a python toolbox for class-
incremental learning,” SCIS, vol. 66, no. 9, pp. 197 101–, 2023.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR,
2016, pp. 770–778.

[62] Y. Liu, S. Parisot, G. Slabaugh, X. Jia, A. Leonardis, and T. Tuytelaars, “More classifiers, less
forgetting: A generic multi-classifier paradigm for incremental learning,” in ECCV, 2020, pp.
699–716.

[63] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” JMLR, 2008.

[64] G. Wu, S. Gong, and P. Li, “Striking a balance between stability and plasticity for class-
incremental learning,” in ICCV, 2021, pp. 1124–1133.

[65] G. Lin, H. Chu, and H. Lai, “Towards better plasticity-stability trade-off in incremental learning:
A simple linear connector,” in CVPR, 2022, pp. 89–98.

[66] N. Asadi, M. Davari, S. Mudur, R. Aljundi, and E. Belilovsky, “Prototype-sample relation
distillation: towards replay-free continual learning,” in ICML, 2023, pp. 1093–1106.

[67] M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity dilemma: Investigating the
continuum from catastrophic forgetting to age-limited learning effects,” Frontiers in psychology,
vol. 4, p. 504, 2013.

13

A Appendix / supplemental material

A.1 Detailed Description of the Accuracy Curve

To facilitate comparison of future work with our method, we provide detailed values of the accuracy
curves in Tab. 3, Tab. 4 and Tab. 5, where ’A’ represents the CIFAR-100 dataset, ’B’ represents the
TinyImageNet dataset and ’C’ represents the ImageNet-Subset dataset, respectively.

Table 3: Detailed values of accuracy under the setting of 5 phases.

PhaseDataset 0 1 2 3 4 5
A 82.80 75.65 72.10 68.26 65.52 63.44
B 66.58 60.58 59.04 57.14 54.10 52.13
C 84.52 77.90 72.32 69.72 67.16 65.44

Table 4: Detailed values of accuracy under the setting of 10 phases.

PhaseDatasets 0 1 2 3 4 5 6 7 8 9 10
A 82.80 78.76 74.90 73.18 70.71 69.53 67.35 65.36 64.90 63.24 61.71
B 66.58 62.75 61.02 58.83 58.57 56.73 56.34 54.79 53.18 51.64 50.25
C 84.52 80.69 76.37 73.57 71.89 70.51 68.6 67.13 65.53 63.68 64.10

Table 5: Detailed values of accuracy under the setting of 20 phases.

PhaseDatasets 0 1 2 3 4 5 6 7 8 9
A 83.45 79.81 78.85 76.80 76.06 74.64 72.64 70.52 68.27 67.84
B 66.38 63.26 62.22 61.19 60.07 58.85 57.68 57.46 56.45 55.31
C 84.75 80.84 77.91 78.08 75.27 74.55 73.31 69.38 67.75 65.85

PhaseDatasets 10 11 12 13 14 15 16 17 18 19 20
A 66.80 66.36 66.37 64.06 62.84 61.46 61.61 60.77 58.98 58.94 57.74
B 54.34 53.61 53.51 52.41 51.69 50.23 49.06 48.05 47.58 47.63 45.58
C 63.66 62.36 62.18 60.86 60.22 60.85 57.73 57.91 57.30 57.32 56.52

Evaluation on Large Datasets. To further demonstrate the effectiveness of our method, we evaluated
it on a large-scale dataset — ImageNet-1K. For ImageNet-1K, we allocate 500 classes for the base
phase and 50 classes for each of the 10 incremental phases. As shown in Table 6, our method shows
an improvement of 1.9% compared to the suboptimal results.

Table 6: Comparisons the average incremental accuracies of the different methods for the 10 phases
setting on ImageNet-1k.

Method PASS SSRE SOPE POLO NAPA PRL (Ours)
Accuracy (%) 55.90 58.12 60.20 61.53 54.21 62.74

Plug-and-play with other NECIL methods. Existing NECIL methods mainly focus on backward-
looking means of resolving conflicts between old and new classes, which does not contradict our
prospective learning. Therefore, we attempt to integrate PRL into the existing NECIL methods. Tab. 7
illustrates the performance gains achieved by incorporating PRL in these methods. In the setting
of the CIFAR dataset with three different lengths of task sequences, PRL improved accuracy by an
average of 2.7% for IL2A [38] and 2.3% for PASS [6], which demonstrates the good compatibility of
our method.

14

Table 7: We report the performance gain of average incremental accuracy by applying PRL to other
NECIL baselines. Absolute gains are marked in (red).

CIFAR-100
Methods

P=5 P=10 P=20
IL2A [38] 67.35 61.03 60.67

+PRL 69.53 (+2.18) 62.49 (+1.46) 62.36(+1.69)
PASS [6] 63.47 61.84 58.09

+PRL 66.22 (+2.75) 62.85 (+1.01) 58.85 (+0.76)

A.2 Impact of the hyper-parameter

To investigate the sensitivity of our method to the hyper-parameters λ and γ, we performed ablation
experiments on three settings (5 phases, 10 phases and 20 phases) of the CIFAR-100 dataset. In
Fig. 7 we show the impact of λ, which controls the priority ratio of intra-class constraints and
inter-class constraints. A smaller λ means that the preemptive embedding squeezing (PSE) is more
concerned with intra-class concentration. Conversely, for a larger λ, more emphasis is placed on
inter-class separation. When the value of λ is either too large or too small, the performance of our
method degrades, indicating that there is a need to maintain a certain balance between the intra-class
constraint and the inter-class constraint. The best performance is achieved when λ is equal to 0.5,
suggesting that for prospective learning in NECIL, intra-class concentration could be more important
than inter-class separation.

We also provide an analysis of the impact of the hyper-parameters γ in Fig. 8. The performance of
our method is stable on the 5 phase setting. The performance of the model gradually increases as γ
increases on the 10-phase and 20-phase settings, peaking at γ = 0.1. However, continued increase in
the values of γ leads to a decline in model performance. We argue that too large loss weights cause
PSE to interfere with the optimization of cross-entropy for classification performance. In addition,
our method is more sensitive to the values of λ and γ when there are more tasks (20 phases) to learn.

𝜆 𝛾

70.87 71.14 71.26
70.92 71.16

70.71

69.66
70.02 70.17

69.24
68.41

66.19 67.78 67.81
68.44

67.76 67.49

65.81

62

64

66

68

70

72

0.02 0.05 0.1 0.2 0.3 0.5

av
er

ag
e

ac
cu

ra
cy

 (
%

)

value of

5 phases 10 phases 20 phases

71.01 71.08 71.26 71.17 71.32 71.18
70.66

70.10 69.99 70.17 70.03
69.67 69.52

68.83

67.14

67.93
68.44

67.72 67.48 67.52 67.36

64

66

68

70

72

0.1 0.25 0.5 0.75 1 1.5 2

av
er

ag
e

ac
cu

ra
cy

 (
%

)

value of

5 phases 10 phases 20 phases

Figure 7: Impact of the hyper-parameter λ in our
preemptive embedding squeezing, which con-
trols the priority ratio of intra-class constraints
and inter-class constraints. Larger values of λ
represent a stronger inter-class separation.

𝜆 𝛾

70.87 71.14 71.26
70.92 71.16

70.71

69.66
70.02 70.17

69.24
68.41

66.19 67.78 67.81
68.44

67.76 67.49

65.81

62

64

66

68

70

72

0.02 0.05 0.1 0.2 0.3 0.5

av
er

ag
e

ac
cu

ra
cy

 (
%

)

value of

5 phases 10 phases 20 phases

71.01 71.08 71.26 71.17 71.32 71.18
70.66

70.10 69.99 70.17 70.03
69.67 69.52

68.83

67.14

67.93
68.44

67.72 67.48 67.52 67.36

64

66

68

70

72

0.1 0.25 0.5 0.75 1 1.5 2

av
er

ag
e

ac
cu

ra
cy

 (
%

)

value of

5 phases 10 phases 20 phases

Figure 8: Impact of the hyper-parameter γ,
which controls for the weight of the PSE loss.
Larger values of λ represent that the PSE loss
exerts a greater influence in the base phase of
training compared to the cross-entropy loss.

For the hyperparameter of loss weight, we set α1 = 10, α2 = 10, and α3 = 2 by default. When
a sensitivity analysis is performed on one of the hyperparameters, default settings are used for the
remaining hyperparameters. As shown in Fig. 9, the left column shows the effect of changing the
value of each hyperparameter on the average incremental accuracy of our method, and the right
column shows the effect of changing the value of each hyperparameter in the last phase on the
accuracy on the new and old tasks, respectively.

Among the three hyperparameters in eq. (14), α1 and α2 are common in previous NECIL methods
and represent the weights of distillation loss and prototype loss, respectively. The main role of these
two loss functions is to maintain the pre-existing knowledge of the model. Therefore, as shown

15

69.54

70.88
71.30 71.26 71.19 71.04

65.68

68.69
69.54

70.17 70.03 70.38

61.38

67.12
68.14

68.44
68.79 68.87

60

64

68

72

1 3 5 10 15 20

av
er

ag
e

in
cr

em
en

ta
l a

cc
u

ra
cy

 (
%

)

value of

P=5 P=10 P=20

71.23 71.17 71.24 71.26
70.96

70.55

69.93 70.09 70.21 70.17 70.00 69.81

68.05 68.08 68.20 68.44
68.15

67.45

64

66

68

70

72

1 3 5 10 15 20

av
er

ag
e

in
cr

em
en

ta
l a

cc
u

ra
cy

 (
%

)

value of

P=5 P=10 P=20

70.88
71.35 71.26 71.22 71.04

70.79

69.72
70.09 70.17 70.25

70.02 69.94

67.54

68.32 68.44 68.29 68.41
68.05

65

67

69

71

73

0.5 1 2 3 5 10

av
er

ag
e

in
cr

em
en

ta
l a

cc
u

ra
cy

 (
%

)

value of

P=5 P=10 P=20

(c)

Impact of hyperparameters on overall performance

(b)

(a)

50

60

70

80

1 3 5 10 15 20

ac
cu

ra
cy

 (
%

)

value of

new classes old classes

50

60

70

80

1 3 5 10 15 20
ac

cu
ra

cy
 (

%
)

value of

new classes old classes

50

55

60

65

70

0.5 1 2 3 5 10

ac
cu

ra
cy

 (
%

)

value of

new classes old classes

𝛼1 𝛼1

𝛼2𝛼2

𝛼3 𝛼3

(f)

(e)

(d)

Impact of hyperparameters on on the new and old tasks

Figure 9: The figures in the left column show the effect of changing the value of each hyperparameter
on the average incremental accuracy of our method on CIFAR-100 dataset, where ’P’ denotes the
number of incremental phases. The figures in the right column show the effect of changing the value
of each hyperparameter in the last phase on the accuracy on the new and old tasks on CIFAR-100
dataset (P=10), respectively.

in Fig. 9 (d) and Fig. 9 (e), as α1 and α2 get larger, the optimization of the model will be biased
towards maintaining stability at the expense of plasticity, resulting in the model performing better on
the old task and worse on the new task. It can be seen that as the value of α1 and α2 increases to a
certain level its performance improvement on old tasks slows down. Excessively large values of and
will bring much less gain on the old task than they will hurt performance on the new task. For the
consideration of comprehensive performance and with reference to previous works [6; 48], we set
α1 = 10 and α2 = 10 for our method.

Then α3 controls the loss of the Prototype-Guided Representation Update (PGRU) proposed in this
paper. In Fig. 9 (c), as α3 increases PGRU comes into play. The effect of increasing α3 on the overall
performance of the algorithm fluctuates, which may be caused by overly strict constraints on the
learning of new class representations. Overall, our algorithm is relatively robust to the choice of
hyperparameters.

16

	Introduction
	Related Work
	Class-Incremental Learning
	Non-Exemplar Class-Incremental Learning
	Embedding Space Regularization

	Methodology
	Problem Statement
	Baseline
	Prospective Representation Learning

	Experiment
	Experimental Setting
	Comparison with SOTA
	Ablation Study
	Analysis

	Conclusion and Limitation
	Appendix / supplemental material
	Detailed Description of the Accuracy Curve
	Impact of the hyper-parameter

